Proof of Theorem caucvgprlem1
| Step | Hyp | Ref
| Expression |
| 1 | | caucvgprlemlim.jk |
. . . . . 6
⊢ (𝜑 → 𝐽 <N 𝐾) |
| 2 | | ltrelpi 7408 |
. . . . . . 7
⊢
<N ⊆ (N ×
N) |
| 3 | 2 | brel 4716 |
. . . . . 6
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 4 | 1, 3 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) |
| 5 | 4 | simprd 114 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ N) |
| 6 | | caucvgprlemlim.jkq |
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑄) |
| 7 | 1, 6 | caucvgprlemk 7749 |
. . . . 5
⊢ (𝜑 →
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄) |
| 8 | | caucvgpr.f |
. . . . . 6
⊢ (𝜑 → 𝐹:N⟶Q) |
| 9 | 8, 5 | ffvelcdmd 5701 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐾) ∈ Q) |
| 10 | | ltanqi 7486 |
. . . . 5
⊢
(((*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄 ∧ (𝐹‘𝐾) ∈ Q) → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) |
| 12 | | opeq1 3809 |
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → 〈𝑗, 1o〉 = 〈𝐾,
1o〉) |
| 13 | 12 | eceq1d 6637 |
. . . . . . . 8
⊢ (𝑗 = 𝐾 → [〈𝑗, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) |
| 14 | 13 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑗 = 𝐾 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) |
| 15 | 14 | oveq2d 5941 |
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) |
| 16 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) |
| 17 | 16 | oveq1d 5940 |
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐹‘𝑗) +Q 𝑄) = ((𝐹‘𝐾) +Q 𝑄)) |
| 18 | 15, 17 | breq12d 4047 |
. . . . 5
⊢ (𝑗 = 𝐾 → (((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄))) |
| 19 | 18 | rspcev 2868 |
. . . 4
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) → ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)) |
| 20 | 5, 11, 19 | syl2anc 411 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)) |
| 21 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑙 = (𝐹‘𝐾) → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) |
| 22 | 21 | breq1d 4044 |
. . . . . . 7
⊢ (𝑙 = (𝐹‘𝐾) → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) |
| 23 | 22 | rexbidv 2498 |
. . . . . 6
⊢ (𝑙 = (𝐹‘𝐾) → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) |
| 24 | 23 | elrab3 2921 |
. . . . 5
⊢ ((𝐹‘𝐾) ∈ Q → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) |
| 25 | 9, 24 | syl 14 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) |
| 26 | | caucvgpr.cau |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) |
| 27 | | caucvgpr.bnd |
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) |
| 28 | | caucvgpr.lim |
. . . . . 6
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 |
| 29 | | caucvgprlemlim.q |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ Q) |
| 30 | 8, 26, 27, 28, 29 | caucvgprlemladdrl 7762 |
. . . . 5
⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ⊆ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 31 | 30 | sseld 3183 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)))) |
| 32 | 25, 31 | sylbird 170 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)))) |
| 33 | 20, 32 | mpd 13 |
. 2
⊢ (𝜑 → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 34 | 8, 26, 27, 28 | caucvgprlemcl 7760 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ P) |
| 35 | | nqprlu 7631 |
. . . . 5
⊢ (𝑄 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
| 36 | 29, 35 | syl 14 |
. . . 4
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) |
| 37 | | addclpr 7621 |
. . . 4
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P)
→ (𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
| 38 | 34, 36, 37 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) |
| 39 | | nqprl 7635 |
. . 3
⊢ (((𝐹‘𝐾) ∈ Q ∧ (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P)
→ ((𝐹‘𝐾) ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 40 | 9, 38, 39 | syl2anc 411 |
. 2
⊢ (𝜑 → ((𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) |
| 41 | 33, 40 | mpbid 147 |
1
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |