Proof of Theorem caucvgprlem1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | caucvgprlemlim.jk | 
. . . . . 6
⊢ (𝜑 → 𝐽 <N 𝐾) | 
| 2 |   | ltrelpi 7391 | 
. . . . . . 7
⊢ 
<N ⊆ (N ×
N) | 
| 3 | 2 | brel 4715 | 
. . . . . 6
⊢ (𝐽 <N
𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) | 
| 4 | 1, 3 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈
N)) | 
| 5 | 4 | simprd 114 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ N) | 
| 6 |   | caucvgprlemlim.jkq | 
. . . . . 6
⊢ (𝜑 →
(*Q‘[〈𝐽, 1o〉]
~Q ) <Q 𝑄) | 
| 7 | 1, 6 | caucvgprlemk 7732 | 
. . . . 5
⊢ (𝜑 →
(*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄) | 
| 8 |   | caucvgpr.f | 
. . . . . 6
⊢ (𝜑 → 𝐹:N⟶Q) | 
| 9 | 8, 5 | ffvelcdmd 5698 | 
. . . . 5
⊢ (𝜑 → (𝐹‘𝐾) ∈ Q) | 
| 10 |   | ltanqi 7469 | 
. . . . 5
⊢
(((*Q‘[〈𝐾, 1o〉]
~Q ) <Q 𝑄 ∧ (𝐹‘𝐾) ∈ Q) → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) | 
| 11 | 7, 9, 10 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) | 
| 12 |   | opeq1 3808 | 
. . . . . . . . 9
⊢ (𝑗 = 𝐾 → 〈𝑗, 1o〉 = 〈𝐾,
1o〉) | 
| 13 | 12 | eceq1d 6628 | 
. . . . . . . 8
⊢ (𝑗 = 𝐾 → [〈𝑗, 1o〉]
~Q = [〈𝐾, 1o〉]
~Q ) | 
| 14 | 13 | fveq2d 5562 | 
. . . . . . 7
⊢ (𝑗 = 𝐾 →
(*Q‘[〈𝑗, 1o〉]
~Q ) = (*Q‘[〈𝐾, 1o〉]
~Q )) | 
| 15 | 14 | oveq2d 5938 | 
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q ))) | 
| 16 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑗 = 𝐾 → (𝐹‘𝑗) = (𝐹‘𝐾)) | 
| 17 | 16 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑗 = 𝐾 → ((𝐹‘𝑗) +Q 𝑄) = ((𝐹‘𝐾) +Q 𝑄)) | 
| 18 | 15, 17 | breq12d 4046 | 
. . . . 5
⊢ (𝑗 = 𝐾 → (((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄))) | 
| 19 | 18 | rspcev 2868 | 
. . . 4
⊢ ((𝐾 ∈ N ∧
((𝐹‘𝐾) +Q
(*Q‘[〈𝐾, 1o〉]
~Q )) <Q ((𝐹‘𝐾) +Q 𝑄)) → ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)) | 
| 20 | 5, 11, 19 | syl2anc 411 | 
. . 3
⊢ (𝜑 → ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)) | 
| 21 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑙 = (𝐹‘𝐾) → (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) = ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q ))) | 
| 22 | 21 | breq1d 4043 | 
. . . . . . 7
⊢ (𝑙 = (𝐹‘𝐾) → ((𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) | 
| 23 | 22 | rexbidv 2498 | 
. . . . . 6
⊢ (𝑙 = (𝐹‘𝐾) → (∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) | 
| 24 | 23 | elrab3 2921 | 
. . . . 5
⊢ ((𝐹‘𝐾) ∈ Q → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) | 
| 25 | 9, 24 | syl 14 | 
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ↔ ∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄))) | 
| 26 |   | caucvgpr.cau | 
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N
𝑘 → ((𝐹‘𝑛) <Q ((𝐹‘𝑘) +Q
(*Q‘[〈𝑛, 1o〉]
~Q )) ∧ (𝐹‘𝑘) <Q ((𝐹‘𝑛) +Q
(*Q‘[〈𝑛, 1o〉]
~Q ))))) | 
| 27 |   | caucvgpr.bnd | 
. . . . . 6
⊢ (𝜑 → ∀𝑗 ∈ N 𝐴 <Q (𝐹‘𝑗)) | 
| 28 |   | caucvgpr.lim | 
. . . . . 6
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q (𝐹‘𝑗)}, {𝑢 ∈ Q ∣ ∃𝑗 ∈ N ((𝐹‘𝑗) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q 𝑢}〉 | 
| 29 |   | caucvgprlemlim.q | 
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ Q) | 
| 30 | 8, 26, 27, 28, 29 | caucvgprlemladdrl 7745 | 
. . . . 5
⊢ (𝜑 → {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} ⊆ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) | 
| 31 | 30 | sseld 3182 | 
. . . 4
⊢ (𝜑 → ((𝐹‘𝐾) ∈ {𝑙 ∈ Q ∣ ∃𝑗 ∈ N (𝑙 +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄)} → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)))) | 
| 32 | 25, 31 | sylbird 170 | 
. . 3
⊢ (𝜑 → (∃𝑗 ∈ N ((𝐹‘𝐾) +Q
(*Q‘[〈𝑗, 1o〉]
~Q )) <Q ((𝐹‘𝑗) +Q 𝑄) → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)))) | 
| 33 | 20, 32 | mpd 13 | 
. 2
⊢ (𝜑 → (𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) | 
| 34 | 8, 26, 27, 28 | caucvgprlemcl 7743 | 
. . . 4
⊢ (𝜑 → 𝐿 ∈ P) | 
| 35 |   | nqprlu 7614 | 
. . . . 5
⊢ (𝑄 ∈ Q →
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) | 
| 36 | 29, 35 | syl 14 | 
. . . 4
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈
P) | 
| 37 |   | addclpr 7604 | 
. . . 4
⊢ ((𝐿 ∈ P ∧
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉 ∈ P)
→ (𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) | 
| 38 | 34, 36, 37 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈
P) | 
| 39 |   | nqprl 7618 | 
. . 3
⊢ (((𝐹‘𝐾) ∈ Q ∧ (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉) ∈ P)
→ ((𝐹‘𝐾) ∈ (1st
‘(𝐿
+P 〈{𝑙 ∣ 𝑙 <Q 𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) | 
| 40 | 9, 38, 39 | syl2anc 411 | 
. 2
⊢ (𝜑 → ((𝐹‘𝐾) ∈ (1st ‘(𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) ↔ 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉))) | 
| 41 | 33, 40 | mpbid 147 | 
1
⊢ (𝜑 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝐾)}, {𝑢 ∣ (𝐹‘𝐾) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
𝑄}, {𝑢 ∣ 𝑄 <Q 𝑢}〉)) |