ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 GIF version

Theorem caucvgprlem1 7480
Description: Lemma for caucvgpr 7483. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙,𝑢   𝑗,𝐾,𝑙,𝑢   𝑄,𝑗,𝑙,𝑢   𝑄,𝑘   𝑗,𝐿,𝑘   𝑢,𝑗   𝑘,𝐹,𝑛   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6 (𝜑𝐽 <N 𝐾)
2 ltrelpi 7125 . . . . . . 7 <N ⊆ (N × N)
32brel 4586 . . . . . 6 (𝐽 <N 𝐾 → (𝐽N𝐾N))
41, 3syl 14 . . . . 5 (𝜑 → (𝐽N𝐾N))
54simprd 113 . . . 4 (𝜑𝐾N)
6 caucvgprlemlim.jkq . . . . . 6 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
71, 6caucvgprlemk 7466 . . . . 5 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
8 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
98, 5ffvelrnd 5549 . . . . 5 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 7203 . . . . 5 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
117, 9, 10syl2anc 408 . . . 4 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 opeq1 3700 . . . . . . . . 9 (𝑗 = 𝐾 → ⟨𝑗, 1o⟩ = ⟨𝐾, 1o⟩)
1312eceq1d 6458 . . . . . . . 8 (𝑗 = 𝐾 → [⟨𝑗, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
1413fveq2d 5418 . . . . . . 7 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
1514oveq2d 5783 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
16 fveq2 5414 . . . . . . 7 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
1716oveq1d 5782 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝑗) +Q 𝑄) = ((𝐹𝐾) +Q 𝑄))
1815, 17breq12d 3937 . . . . 5 (𝑗 = 𝐾 → (((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)))
1918rspcev 2784 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)) → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
205, 11, 19syl2anc 408 . . 3 (𝜑 → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
21 oveq1 5774 . . . . . . . 8 (𝑙 = (𝐹𝐾) → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2221breq1d 3934 . . . . . . 7 (𝑙 = (𝐹𝐾) → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2322rexbidv 2436 . . . . . 6 (𝑙 = (𝐹𝐾) → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2423elrab3 2836 . . . . 5 ((𝐹𝐾) ∈ Q → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
259, 24syl 14 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
26 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
27 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
28 caucvgpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
29 caucvgprlemlim.q . . . . . 6 (𝜑𝑄Q)
308, 26, 27, 28, 29caucvgprlemladdrl 7479 . . . . 5 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3130sseld 3091 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3225, 31sylbird 169 . . 3 (𝜑 → (∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3320, 32mpd 13 . 2 (𝜑 → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
348, 26, 27, 28caucvgprlemcl 7477 . . . 4 (𝜑𝐿P)
35 nqprlu 7348 . . . . 5 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
3629, 35syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
37 addclpr 7338 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
3834, 36, 37syl2anc 408 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
39 nqprl 7352 . . 3 (((𝐹𝐾) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P) → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
409, 38, 39syl2anc 408 . 2 (𝜑 → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4133, 40mpbid 146 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2123  wral 2414  wrex 2415  {crab 2418  cop 3525   class class class wbr 3924  wf 5114  cfv 5118  (class class class)co 5767  1st c1st 6029  1oc1o 6299  [cec 6420  Ncnpi 7073   <N clti 7076   ~Q ceq 7080  Qcnq 7081   +Q cplq 7083  *Qcrq 7085   <Q cltq 7086  Pcnp 7092   +P cpp 7094  <P cltp 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-iplp 7269  df-iltp 7271
This theorem is referenced by:  caucvgprlemlim  7482
  Copyright terms: Public domain W3C validator