Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlem1 GIF version

Theorem caucvgprlem1 7512
 Description: Lemma for caucvgpr 7515. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
caucvgprlemlim.q (𝜑𝑄Q)
caucvgprlemlim.jk (𝜑𝐽 <N 𝐾)
caucvgprlemlim.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹,𝑙,𝑢   𝑗,𝐾,𝑙,𝑢   𝑄,𝑗,𝑙,𝑢   𝑄,𝑘   𝑗,𝐿,𝑘   𝑢,𝑗   𝑘,𝐹,𝑛   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝑄(𝑛)   𝐽(𝑢,𝑗,𝑘,𝑛,𝑙)   𝐾(𝑘,𝑛)   𝐿(𝑢,𝑛,𝑙)

Proof of Theorem caucvgprlem1
StepHypRef Expression
1 caucvgprlemlim.jk . . . . . 6 (𝜑𝐽 <N 𝐾)
2 ltrelpi 7157 . . . . . . 7 <N ⊆ (N × N)
32brel 4599 . . . . . 6 (𝐽 <N 𝐾 → (𝐽N𝐾N))
41, 3syl 14 . . . . 5 (𝜑 → (𝐽N𝐾N))
54simprd 113 . . . 4 (𝜑𝐾N)
6 caucvgprlemlim.jkq . . . . . 6 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
71, 6caucvgprlemk 7498 . . . . 5 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
8 caucvgpr.f . . . . . 6 (𝜑𝐹:NQ)
98, 5ffvelrnd 5564 . . . . 5 (𝜑 → (𝐹𝐾) ∈ Q)
10 ltanqi 7235 . . . . 5 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄 ∧ (𝐹𝐾) ∈ Q) → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
117, 9, 10syl2anc 409 . . . 4 (𝜑 → ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄))
12 opeq1 3713 . . . . . . . . 9 (𝑗 = 𝐾 → ⟨𝑗, 1o⟩ = ⟨𝐾, 1o⟩)
1312eceq1d 6473 . . . . . . . 8 (𝑗 = 𝐾 → [⟨𝑗, 1o⟩] ~Q = [⟨𝐾, 1o⟩] ~Q )
1413fveq2d 5433 . . . . . . 7 (𝑗 = 𝐾 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) = (*Q‘[⟨𝐾, 1o⟩] ~Q ))
1514oveq2d 5798 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )))
16 fveq2 5429 . . . . . . 7 (𝑗 = 𝐾 → (𝐹𝑗) = (𝐹𝐾))
1716oveq1d 5797 . . . . . 6 (𝑗 = 𝐾 → ((𝐹𝑗) +Q 𝑄) = ((𝐹𝐾) +Q 𝑄))
1815, 17breq12d 3950 . . . . 5 (𝑗 = 𝐾 → (((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)))
1918rspcev 2793 . . . 4 ((𝐾N ∧ ((𝐹𝐾) +Q (*Q‘[⟨𝐾, 1o⟩] ~Q )) <Q ((𝐹𝐾) +Q 𝑄)) → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
205, 11, 19syl2anc 409 . . 3 (𝜑 → ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄))
21 oveq1 5789 . . . . . . . 8 (𝑙 = (𝐹𝐾) → (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) = ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )))
2221breq1d 3947 . . . . . . 7 (𝑙 = (𝐹𝐾) → ((𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2322rexbidv 2439 . . . . . 6 (𝑙 = (𝐹𝐾) → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
2423elrab3 2845 . . . . 5 ((𝐹𝐾) ∈ Q → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
259, 24syl 14 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ↔ ∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)))
26 caucvgpr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1o⟩] ~Q )))))
27 caucvgpr.bnd . . . . . 6 (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
28 caucvgpr.lim . . . . . 6 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q 𝑢}⟩
29 caucvgprlemlim.q . . . . . 6 (𝜑𝑄Q)
308, 26, 27, 28, 29caucvgprlemladdrl 7511 . . . . 5 (𝜑 → {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} ⊆ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3130sseld 3101 . . . 4 (𝜑 → ((𝐹𝐾) ∈ {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄)} → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3225, 31sylbird 169 . . 3 (𝜑 → (∃𝑗N ((𝐹𝐾) +Q (*Q‘[⟨𝑗, 1o⟩] ~Q )) <Q ((𝐹𝑗) +Q 𝑄) → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3320, 32mpd 13 . 2 (𝜑 → (𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
348, 26, 27, 28caucvgprlemcl 7509 . . . 4 (𝜑𝐿P)
35 nqprlu 7380 . . . . 5 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
3629, 35syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
37 addclpr 7370 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
3834, 36, 37syl2anc 409 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P)
39 nqprl 7384 . . 3 (((𝐹𝐾) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ∈ P) → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
409, 38, 39syl2anc 409 . 2 (𝜑 → ((𝐹𝐾) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4133, 40mpbid 146 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝐾)}, {𝑢 ∣ (𝐹𝐾) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  {crab 2421  ⟨cop 3535   class class class wbr 3937  ⟶wf 5127  ‘cfv 5131  (class class class)co 5782  1st c1st 6044  1oc1o 6314  [cec 6435  Ncnpi 7105
 Copyright terms: Public domain W3C validator