| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltdcpi | GIF version | ||
| Description: Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltdcpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7457 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7457 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nndcel 6609 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 ∈ 𝐵) |
| 5 | ltpiord 7467 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | 5 | dcbid 840 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (DECID 𝐴 <N 𝐵 ↔ DECID 𝐴 ∈ 𝐵)) |
| 7 | 4, 6 | mpbird 167 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 ∈ wcel 2178 class class class wbr 4059 ωcom 4656 Ncnpi 7420 <N clti 7423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-eprel 4354 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-ni 7452 df-lti 7455 |
| This theorem is referenced by: ltdcnq 7545 |
| Copyright terms: Public domain | W3C validator |