![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltdcpi | GIF version |
Description: Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
ltdcpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7369 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7369 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nndcel 6553 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 ∈ 𝐵) |
5 | ltpiord 7379 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | 5 | dcbid 839 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (DECID 𝐴 <N 𝐵 ↔ DECID 𝐴 ∈ 𝐵)) |
7 | 4, 6 | mpbird 167 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∈ wcel 2164 class class class wbr 4029 ωcom 4622 Ncnpi 7332 <N clti 7335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-eprel 4320 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-ni 7364 df-lti 7367 |
This theorem is referenced by: ltdcnq 7457 |
Copyright terms: Public domain | W3C validator |