Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltdcpi | GIF version |
Description: Less-than for positive integers is decidable. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
ltdcpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7271 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7271 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nndcel 6479 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → DECID 𝐴 ∈ 𝐵) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 ∈ 𝐵) |
5 | ltpiord 7281 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | 5 | dcbid 833 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (DECID 𝐴 <N 𝐵 ↔ DECID 𝐴 ∈ 𝐵)) |
7 | 4, 6 | mpbird 166 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → DECID 𝐴 <N 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 829 ∈ wcel 2141 class class class wbr 3989 ωcom 4574 Ncnpi 7234 <N clti 7237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-tr 4088 df-eprel 4274 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-ni 7266 df-lti 7269 |
This theorem is referenced by: ltdcnq 7359 |
Copyright terms: Public domain | W3C validator |