ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemk GIF version

Theorem caucvgprlemk 7732
Description: Lemma for caucvgpr 7749. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
Hypotheses
Ref Expression
caucvgprlemk.jk (𝜑𝐽 <N 𝐾)
caucvgprlemk.jkq (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
Assertion
Ref Expression
caucvgprlemk (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)

Proof of Theorem caucvgprlemk
StepHypRef Expression
1 caucvgprlemk.jk . . . 4 (𝜑𝐽 <N 𝐾)
2 ltrelpi 7391 . . . . . . 7 <N ⊆ (N × N)
32brel 4715 . . . . . 6 (𝐽 <N 𝐾 → (𝐽N𝐾N))
41, 3syl 14 . . . . 5 (𝜑 → (𝐽N𝐾N))
5 ltnnnq 7490 . . . . 5 ((𝐽N𝐾N) → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q ))
64, 5syl 14 . . . 4 (𝜑 → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q ))
71, 6mpbid 147 . . 3 (𝜑 → [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q )
8 ltrnqi 7488 . . 3 ([⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))
97, 8syl 14 . 2 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ))
10 caucvgprlemk.jkq . 2 (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄)
11 ltsonq 7465 . . 3 <Q Or Q
12 ltrelnq 7432 . . 3 <Q ⊆ (Q × Q)
1311, 12sotri 5065 . 2 (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∧ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄) → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
149, 10, 13syl2anc 411 1 (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  cop 3625   class class class wbr 4033  cfv 5258  1oc1o 6467  [cec 6590  Ncnpi 7339   <N clti 7342   ~Q ceq 7346  Qcnq 7347  *Qcrq 7351   <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420
This theorem is referenced by:  caucvgprlem1  7746  caucvgprlem2  7747
  Copyright terms: Public domain W3C validator