![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgprlemk | GIF version |
Description: Lemma for caucvgpr 7684. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.) |
Ref | Expression |
---|---|
caucvgprlemk.jk | ⊢ (𝜑 → 𝐽 <N 𝐾) |
caucvgprlemk.jkq | ⊢ (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄) |
Ref | Expression |
---|---|
caucvgprlemk | ⊢ (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprlemk.jk | . . . 4 ⊢ (𝜑 → 𝐽 <N 𝐾) | |
2 | ltrelpi 7326 | . . . . . . 7 ⊢ <N ⊆ (N × N) | |
3 | 2 | brel 4680 | . . . . . 6 ⊢ (𝐽 <N 𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
5 | ltnnnq 7425 | . . . . 5 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q )) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐽 <N 𝐾 ↔ [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q )) |
7 | 1, 6 | mpbid 147 | . . 3 ⊢ (𝜑 → [⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q ) |
8 | ltrnqi 7423 | . . 3 ⊢ ([⟨𝐽, 1o⟩] ~Q <Q [⟨𝐾, 1o⟩] ~Q → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q )) |
10 | caucvgprlemk.jkq | . 2 ⊢ (𝜑 → (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄) | |
11 | ltsonq 7400 | . . 3 ⊢ <Q Or Q | |
12 | ltrelnq 7367 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
13 | 11, 12 | sotri 5026 | . 2 ⊢ (((*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q (*Q‘[⟨𝐽, 1o⟩] ~Q ) ∧ (*Q‘[⟨𝐽, 1o⟩] ~Q ) <Q 𝑄) → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄) |
14 | 9, 10, 13 | syl2anc 411 | 1 ⊢ (𝜑 → (*Q‘[⟨𝐾, 1o⟩] ~Q ) <Q 𝑄) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 ⟨cop 3597 class class class wbr 4005 ‘cfv 5218 1oc1o 6413 [cec 6536 Ncnpi 7274 <N clti 7277 ~Q ceq 7281 Qcnq 7282 *Qcrq 7286 <Q cltq 7287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-1o 6420 df-oadd 6424 df-omul 6425 df-er 6538 df-ec 6540 df-qs 6544 df-ni 7306 df-mi 7308 df-lti 7309 df-mpq 7347 df-enq 7349 df-nqqs 7350 df-mqqs 7352 df-1nqqs 7353 df-rq 7354 df-ltnqqs 7355 |
This theorem is referenced by: caucvgprlem1 7681 caucvgprlem2 7682 |
Copyright terms: Public domain | W3C validator |