Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgprlemk | GIF version |
Description: Lemma for caucvgpr 7623. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.) |
Ref | Expression |
---|---|
caucvgprlemk.jk | ⊢ (𝜑 → 𝐽 <N 𝐾) |
caucvgprlemk.jkq | ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) |
Ref | Expression |
---|---|
caucvgprlemk | ⊢ (𝜑 → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgprlemk.jk | . . . 4 ⊢ (𝜑 → 𝐽 <N 𝐾) | |
2 | ltrelpi 7265 | . . . . . . 7 ⊢ <N ⊆ (N × N) | |
3 | 2 | brel 4656 | . . . . . 6 ⊢ (𝐽 <N 𝐾 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ N ∧ 𝐾 ∈ N)) |
5 | ltnnnq 7364 | . . . . 5 ⊢ ((𝐽 ∈ N ∧ 𝐾 ∈ N) → (𝐽 <N 𝐾 ↔ [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q )) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐽 <N 𝐾 ↔ [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q )) |
7 | 1, 6 | mpbid 146 | . . 3 ⊢ (𝜑 → [〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q ) |
8 | ltrnqi 7362 | . . 3 ⊢ ([〈𝐽, 1o〉] ~Q <Q [〈𝐾, 1o〉] ~Q → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q (*Q‘[〈𝐽, 1o〉] ~Q )) | |
9 | 7, 8 | syl 14 | . 2 ⊢ (𝜑 → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q (*Q‘[〈𝐽, 1o〉] ~Q )) |
10 | caucvgprlemk.jkq | . 2 ⊢ (𝜑 → (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) | |
11 | ltsonq 7339 | . . 3 ⊢ <Q Or Q | |
12 | ltrelnq 7306 | . . 3 ⊢ <Q ⊆ (Q × Q) | |
13 | 11, 12 | sotri 4999 | . 2 ⊢ (((*Q‘[〈𝐾, 1o〉] ~Q ) <Q (*Q‘[〈𝐽, 1o〉] ~Q ) ∧ (*Q‘[〈𝐽, 1o〉] ~Q ) <Q 𝑄) → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑄) |
14 | 9, 10, 13 | syl2anc 409 | 1 ⊢ (𝜑 → (*Q‘[〈𝐾, 1o〉] ~Q ) <Q 𝑄) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 ‘cfv 5188 1oc1o 6377 [cec 6499 Ncnpi 7213 <N clti 7216 ~Q ceq 7220 Qcnq 7221 *Qcrq 7225 <Q cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-lti 7248 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 |
This theorem is referenced by: caucvgprlem1 7620 caucvgprlem2 7621 |
Copyright terms: Public domain | W3C validator |