ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfn GIF version

Theorem shftfn 10801
Description: Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfn ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem shftfn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4747 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
21a1i 9 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3 fnfun 5305 . . . . . 6 (𝐹 Fn 𝐵 → Fun 𝐹)
43adantr 276 . . . . 5 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun 𝐹)
5 funmo 5223 . . . . . . 7 (Fun 𝐹 → ∃*𝑤(𝑧𝐴)𝐹𝑤)
6 vex 2738 . . . . . . . . . 10 𝑧 ∈ V
7 vex 2738 . . . . . . . . . 10 𝑤 ∈ V
8 eleq1 2238 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ))
9 oveq1 5872 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
109breq1d 4008 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑦))
118, 10anbi12d 473 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦)))
12 breq2 4002 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑧𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑤))
1312anbi2d 464 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)))
14 eqid 2175 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
156, 7, 11, 13, 14brab 4266 . . . . . . . . 9 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤))
1615simprbi 275 . . . . . . . 8 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 → (𝑧𝐴)𝐹𝑤)
1716moimi 2089 . . . . . . 7 (∃*𝑤(𝑧𝐴)𝐹𝑤 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
185, 17syl 14 . . . . . 6 (Fun 𝐹 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
1918alrimiv 1872 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
204, 19syl 14 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
21 dffun6 5222 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤))
222, 20, 21sylanbrc 417 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423shftfval 10798 . . . . 5 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2524adantl 277 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2625funeqd 5230 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}))
2722, 26mpbird 167 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴))
2823shftdm 10799 . . 3 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
29 fndm 5307 . . . . 5 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
3029eleq2d 2245 . . . 4 (𝐹 Fn 𝐵 → ((𝑥𝐴) ∈ dom 𝐹 ↔ (𝑥𝐴) ∈ 𝐵))
3130rabbidv 2724 . . 3 (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
3228, 31sylan9eqr 2230 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
33 df-fn 5211 . 2 ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}))
3427, 32, 33sylanbrc 417 1 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1351   = wceq 1353  ∃*wmo 2025  wcel 2146  {crab 2457  Vcvv 2735   class class class wbr 3998  {copab 4058  dom cdm 4620  Rel wrel 4625  Fun wfun 5202   Fn wfn 5203  (class class class)co 5865  cc 7784  cmin 8102   shift cshi 10791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104  df-shft 10792
This theorem is referenced by:  shftf  10807  seq3shft  10815
  Copyright terms: Public domain W3C validator