ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvsn GIF version

Theorem funcnvsn 5342
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5345 via cnvsn 5187, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5082 . 2 Rel {⟨𝐴, 𝐵⟩}
2 moeq 2958 . . . 4 ∃*𝑦 𝑦 = 𝐴
3 vex 2782 . . . . . . . 8 𝑥 ∈ V
4 vex 2782 . . . . . . . 8 𝑦 ∈ V
53, 4brcnv 4882 . . . . . . 7 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦{⟨𝐴, 𝐵⟩}𝑥)
6 df-br 4063 . . . . . . 7 (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
75, 6bitri 184 . . . . . 6 (𝑥{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3664 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
94, 3opth1 4301 . . . . . . 7 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴)
108, 9syl 14 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴)
117, 10sylbi 121 . . . . 5 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦 = 𝐴)
1211moimi 2123 . . . 4 (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦)
132, 12ax-mp 5 . . 3 ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
1413ax-gen 1475 . 2 𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
15 dffun6 5308 . 2 (Fun {⟨𝐴, 𝐵⟩} ↔ (Rel {⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦))
161, 14, 15mpbir2an 947 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:  wal 1373   = wceq 1375  ∃*wmo 2058  wcel 2180  {csn 3646  cop 3649   class class class wbr 4062  ccnv 4695  Rel wrel 4701  Fun wfun 5288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-fun 5296
This theorem is referenced by:  funsng  5343
  Copyright terms: Public domain W3C validator