Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funcnvsn | GIF version |
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5246 via cnvsn 5093, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
funcnvsn | ⊢ Fun ◡{〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . 2 ⊢ Rel ◡{〈𝐴, 𝐵〉} | |
2 | moeq 2905 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
3 | vex 2733 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | vex 2733 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brcnv 4794 | . . . . . . 7 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 𝑦{〈𝐴, 𝐵〉}𝑥) |
6 | df-br 3990 | . . . . . . 7 ⊢ (𝑦{〈𝐴, 𝐵〉}𝑥 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) | |
7 | 5, 6 | bitri 183 | . . . . . 6 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
8 | elsni 3601 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) | |
9 | 4, 3 | opth1 4221 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 → 𝑦 = 𝐴) |
10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 𝑦 = 𝐴) |
11 | 7, 10 | sylbi 120 | . . . . 5 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 → 𝑦 = 𝐴) |
12 | 11 | moimi 2084 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦) |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
14 | 13 | ax-gen 1442 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
15 | dffun6 5212 | . 2 ⊢ (Fun ◡{〈𝐴, 𝐵〉} ↔ (Rel ◡{〈𝐴, 𝐵〉} ∧ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦)) | |
16 | 1, 14, 15 | mpbir2an 937 | 1 ⊢ Fun ◡{〈𝐴, 𝐵〉} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1346 = wceq 1348 ∃*wmo 2020 ∈ wcel 2141 {csn 3583 〈cop 3586 class class class wbr 3989 ◡ccnv 4610 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: funsng 5244 |
Copyright terms: Public domain | W3C validator |