ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnvsn GIF version

Theorem funcnvsn 5299
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5302 via cnvsn 5148, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.)
Assertion
Ref Expression
funcnvsn Fun {⟨𝐴, 𝐵⟩}

Proof of Theorem funcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5043 . 2 Rel {⟨𝐴, 𝐵⟩}
2 moeq 2935 . . . 4 ∃*𝑦 𝑦 = 𝐴
3 vex 2763 . . . . . . . 8 𝑥 ∈ V
4 vex 2763 . . . . . . . 8 𝑦 ∈ V
53, 4brcnv 4845 . . . . . . 7 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦{⟨𝐴, 𝐵⟩}𝑥)
6 df-br 4030 . . . . . . 7 (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
75, 6bitri 184 . . . . . 6 (𝑥{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3636 . . . . . . 7 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩)
94, 3opth1 4265 . . . . . . 7 (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴)
108, 9syl 14 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴)
117, 10sylbi 121 . . . . 5 (𝑥{⟨𝐴, 𝐵⟩}𝑦𝑦 = 𝐴)
1211moimi 2107 . . . 4 (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦)
132, 12ax-mp 5 . . 3 ∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
1413ax-gen 1460 . 2 𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦
15 dffun6 5268 . 2 (Fun {⟨𝐴, 𝐵⟩} ↔ (Rel {⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝐴, 𝐵⟩}𝑦))
161, 14, 15mpbir2an 944 1 Fun {⟨𝐴, 𝐵⟩}
Colors of variables: wff set class
Syntax hints:  wal 1362   = wceq 1364  ∃*wmo 2043  wcel 2164  {csn 3618  cop 3621   class class class wbr 4029  ccnv 4658  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by:  funsng  5300
  Copyright terms: Public domain W3C validator