![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funcnvsn | GIF version |
Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5266 via cnvsn 5113, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
Ref | Expression |
---|---|
funcnvsn | ⊢ Fun ◡{⟨𝐴, 𝐵⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5008 | . 2 ⊢ Rel ◡{⟨𝐴, 𝐵⟩} | |
2 | moeq 2914 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
3 | vex 2742 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
4 | vex 2742 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | brcnv 4812 | . . . . . . 7 ⊢ (𝑥◡{⟨𝐴, 𝐵⟩}𝑦 ↔ 𝑦{⟨𝐴, 𝐵⟩}𝑥) |
6 | df-br 4006 | . . . . . . 7 ⊢ (𝑦{⟨𝐴, 𝐵⟩}𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩}) | |
7 | 5, 6 | bitri 184 | . . . . . 6 ⊢ (𝑥◡{⟨𝐴, 𝐵⟩}𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩}) |
8 | elsni 3612 | . . . . . . 7 ⊢ (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩) | |
9 | 4, 3 | opth1 4238 | . . . . . . 7 ⊢ (⟨𝑦, 𝑥⟩ = ⟨𝐴, 𝐵⟩ → 𝑦 = 𝐴) |
10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} → 𝑦 = 𝐴) |
11 | 7, 10 | sylbi 121 | . . . . 5 ⊢ (𝑥◡{⟨𝐴, 𝐵⟩}𝑦 → 𝑦 = 𝐴) |
12 | 11 | moimi 2091 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{⟨𝐴, 𝐵⟩}𝑦) |
13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{⟨𝐴, 𝐵⟩}𝑦 |
14 | 13 | ax-gen 1449 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{⟨𝐴, 𝐵⟩}𝑦 |
15 | dffun6 5232 | . 2 ⊢ (Fun ◡{⟨𝐴, 𝐵⟩} ↔ (Rel ◡{⟨𝐴, 𝐵⟩} ∧ ∀𝑥∃*𝑦 𝑥◡{⟨𝐴, 𝐵⟩}𝑦)) | |
16 | 1, 14, 15 | mpbir2an 942 | 1 ⊢ Fun ◡{⟨𝐴, 𝐵⟩} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1351 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 {csn 3594 ⟨cop 3597 class class class wbr 4005 ◡ccnv 4627 Rel wrel 4633 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-fun 5220 |
This theorem is referenced by: funsng 5264 |
Copyright terms: Public domain | W3C validator |