| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funcnvsn | GIF version | ||
| Description: The converse singleton of an ordered pair is a function. This is equivalent to funsn 5369 via cnvsn 5211, but stating it this way allows us to skip the sethood assumptions on 𝐴 and 𝐵. (Contributed by NM, 30-Apr-2015.) |
| Ref | Expression |
|---|---|
| funcnvsn | ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 | . 2 ⊢ Rel ◡{〈𝐴, 𝐵〉} | |
| 2 | moeq 2978 | . . . 4 ⊢ ∃*𝑦 𝑦 = 𝐴 | |
| 3 | vex 2802 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 4 | vex 2802 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | brcnv 4905 | . . . . . . 7 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 𝑦{〈𝐴, 𝐵〉}𝑥) |
| 6 | df-br 4084 | . . . . . . 7 ⊢ (𝑦{〈𝐴, 𝐵〉}𝑥 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) | |
| 7 | 5, 6 | bitri 184 | . . . . . 6 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 ↔ 〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉}) |
| 8 | elsni 3684 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉) | |
| 9 | 4, 3 | opth1 4322 | . . . . . . 7 ⊢ (〈𝑦, 𝑥〉 = 〈𝐴, 𝐵〉 → 𝑦 = 𝐴) |
| 10 | 8, 9 | syl 14 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ {〈𝐴, 𝐵〉} → 𝑦 = 𝐴) |
| 11 | 7, 10 | sylbi 121 | . . . . 5 ⊢ (𝑥◡{〈𝐴, 𝐵〉}𝑦 → 𝑦 = 𝐴) |
| 12 | 11 | moimi 2143 | . . . 4 ⊢ (∃*𝑦 𝑦 = 𝐴 → ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦) |
| 13 | 2, 12 | ax-mp 5 | . . 3 ⊢ ∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 14 | 13 | ax-gen 1495 | . 2 ⊢ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦 |
| 15 | dffun6 5332 | . 2 ⊢ (Fun ◡{〈𝐴, 𝐵〉} ↔ (Rel ◡{〈𝐴, 𝐵〉} ∧ ∀𝑥∃*𝑦 𝑥◡{〈𝐴, 𝐵〉}𝑦)) | |
| 16 | 1, 14, 15 | mpbir2an 948 | 1 ⊢ Fun ◡{〈𝐴, 𝐵〉} |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 = wceq 1395 ∃*wmo 2078 ∈ wcel 2200 {csn 3666 〈cop 3669 class class class wbr 4083 ◡ccnv 4718 Rel wrel 4724 Fun wfun 5312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-fun 5320 |
| This theorem is referenced by: funsng 5367 |
| Copyright terms: Public domain | W3C validator |