ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdlend GIF version

Theorem swrdlend 11185
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdlend ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdlend
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 swrdval 11175 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
21adantr 276 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
3 simpr 110 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → 𝐿𝐹)
4 3simpc 1020 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
54adantr 276 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
6 fzon 10359 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (𝐹..^𝐿) = ∅))
75, 6syl 14 . . . . . 6 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐿𝐹 ↔ (𝐹..^𝐿) = ∅))
83, 7mpbid 147 . . . . 5 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹..^𝐿) = ∅)
9 0ss 3530 . . . . 5 ∅ ⊆ dom 𝑊
108, 9eqsstrdi 3276 . . . 4 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝐹..^𝐿) ⊆ dom 𝑊)
1110iftrued 3609 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))))
12 fzo0n 10360 . . . . . . 7 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
1312biimpa 296 . . . . . 6 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (0..^(𝐿𝐹)) = ∅)
14133adantl1 1177 . . . . 5 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (0..^(𝐿𝐹)) = ∅)
1514mpteq1d 4168 . . . 4 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))))
16 mpt0 5450 . . . 4 (𝑖 ∈ ∅ ↦ (𝑊‘(𝑖 + 𝐹))) = ∅
1715, 16eqtrdi 2278 . . 3 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))) = ∅)
182, 11, 173eqtrd 2266 . 2 (((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐿𝐹) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
1918ex 115 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wss 3197  c0 3491  ifcif 3602  cop 3669   class class class wbr 4082  cmpt 4144  dom cdm 4718  cfv 5317  (class class class)co 6000  0cc0 7995   + caddc 7998  cle 8178  cmin 8313  cz 9442  ..^cfzo 10334  Word cword 11066   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-substr 11173
This theorem is referenced by:  swrdnd  11186  swrdsb0eq  11192  swrdccat  11262
  Copyright terms: Public domain W3C validator