| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzsnfd | GIF version | ||
| Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumfzsnd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
| gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
| Ref | Expression |
|---|---|
| gsumfzsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 2 | elsni 3664 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
| 3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
| 5 | 1, 4 | mpteq2da 4152 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 6 | 5 | oveq2d 5990 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 7 | gsumfzsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fzsn 10230 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 10 | 9 | mpteq1d 4148 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 11 | 10 | oveq2d 5990 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 12 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 13 | 7 | uzidd 9705 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 14 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 15 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 16 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | eqid 2209 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 18 | 15, 16, 17 | gsumfzconstf 13845 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 19 | 12, 13, 14, 18 | syl3anc 1252 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 20 | 6, 11, 19 | 3eqtr2d 2248 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 21 | 7 | zcnd 9538 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 22 | 21 | subidd 8413 | . . . . 5 ⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
| 23 | 22 | oveq1d 5989 | . . . 4 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = (0 + 1)) |
| 24 | 0p1e1 9192 | . . . 4 ⊢ (0 + 1) = 1 | |
| 25 | 23, 24 | eqtrdi 2258 | . . 3 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = 1) |
| 26 | 25 | oveq1d 5989 | . 2 ⊢ (𝜑 → (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
| 27 | 16, 17 | mulg1 13632 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 28 | 14, 27 | syl 14 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 29 | 20, 26, 28 | 3eqtrd 2246 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 Ⅎwnf 1486 ∈ wcel 2180 Ⅎwnfc 2339 {csn 3646 ↦ cmpt 4124 ‘cfv 5294 (class class class)co 5974 0cc0 7967 1c1 7968 + caddc 7970 − cmin 8285 ℤcz 9414 ℤ≥cuz 9690 ...cfz 10172 Basecbs 12998 Σg cgsu 13256 Mndcmnd 13415 .gcmg 13622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-seqfrec 10637 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-igsum 13258 df-minusg 13503 df-mulg 13623 |
| This theorem is referenced by: gsumfzfsumlemm 14516 |
| Copyright terms: Public domain | W3C validator |