| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzsnfd | GIF version | ||
| Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumfzsnd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
| gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
| Ref | Expression |
|---|---|
| gsumfzsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 2 | elsni 3641 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
| 3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
| 5 | 1, 4 | mpteq2da 4123 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 6 | 5 | oveq2d 5941 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 7 | gsumfzsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fzsn 10158 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 10 | 9 | mpteq1d 4119 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 11 | 10 | oveq2d 5941 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 12 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 13 | 7 | uzidd 9633 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 14 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 15 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 16 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | eqid 2196 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 18 | 15, 16, 17 | gsumfzconstf 13548 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 19 | 12, 13, 14, 18 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 20 | 6, 11, 19 | 3eqtr2d 2235 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 21 | 7 | zcnd 9466 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 22 | 21 | subidd 8342 | . . . . 5 ⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
| 23 | 22 | oveq1d 5940 | . . . 4 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = (0 + 1)) |
| 24 | 0p1e1 9121 | . . . 4 ⊢ (0 + 1) = 1 | |
| 25 | 23, 24 | eqtrdi 2245 | . . 3 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = 1) |
| 26 | 25 | oveq1d 5940 | . 2 ⊢ (𝜑 → (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
| 27 | 16, 17 | mulg1 13335 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 28 | 14, 27 | syl 14 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 29 | 20, 26, 28 | 3eqtrd 2233 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 {csn 3623 ↦ cmpt 4095 ‘cfv 5259 (class class class)co 5925 0cc0 7896 1c1 7897 + caddc 7899 − cmin 8214 ℤcz 9343 ℤ≥cuz 9618 ...cfz 10100 Basecbs 12703 Σg cgsu 12959 Mndcmnd 13118 .gcmg 13325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-igsum 12961 df-minusg 13206 df-mulg 13326 |
| This theorem is referenced by: gsumfzfsumlemm 14219 |
| Copyright terms: Public domain | W3C validator |