ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzsnfd GIF version

Theorem gsumfzsnfd 13848
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
Hypotheses
Ref Expression
gsumsnd.b 𝐵 = (Base‘𝐺)
gsumsnd.g (𝜑𝐺 ∈ Mnd)
gsumfzsnd.m (𝜑𝑀 ∈ ℤ)
gsumsnd.c (𝜑𝐶𝐵)
gsumsnd.s ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
gsumsnfd.p 𝑘𝜑
gsumsnfd.c 𝑘𝐶
Assertion
Ref Expression
gsumfzsnfd (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Distinct variable group:   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑘)

Proof of Theorem gsumfzsnfd
StepHypRef Expression
1 gsumsnfd.p . . . . 5 𝑘𝜑
2 elsni 3664 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
3 gsumsnd.s . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐶)
42, 3sylan2 286 . . . . 5 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐶)
51, 4mpteq2da 4152 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶))
65oveq2d 5990 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)))
7 gsumfzsnd.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 fzsn 10230 . . . . . 6 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
97, 8syl 14 . . . . 5 (𝜑 → (𝑀...𝑀) = {𝑀})
109mpteq1d 4148 . . . 4 (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶) = (𝑘 ∈ {𝑀} ↦ 𝐶))
1110oveq2d 5990 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶)))
12 gsumsnd.g . . . 4 (𝜑𝐺 ∈ Mnd)
137uzidd 9705 . . . 4 (𝜑𝑀 ∈ (ℤ𝑀))
14 gsumsnd.c . . . 4 (𝜑𝐶𝐵)
15 gsumsnfd.c . . . . 5 𝑘𝐶
16 gsumsnd.b . . . . 5 𝐵 = (Base‘𝐺)
17 eqid 2209 . . . . 5 (.g𝐺) = (.g𝐺)
1815, 16, 17gsumfzconstf 13845 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ (ℤ𝑀) ∧ 𝐶𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀𝑀) + 1)(.g𝐺)𝐶))
1912, 13, 14, 18syl3anc 1252 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀𝑀) + 1)(.g𝐺)𝐶))
206, 11, 193eqtr2d 2248 . 2 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (((𝑀𝑀) + 1)(.g𝐺)𝐶))
217zcnd 9538 . . . . . 6 (𝜑𝑀 ∈ ℂ)
2221subidd 8413 . . . . 5 (𝜑 → (𝑀𝑀) = 0)
2322oveq1d 5989 . . . 4 (𝜑 → ((𝑀𝑀) + 1) = (0 + 1))
24 0p1e1 9192 . . . 4 (0 + 1) = 1
2523, 24eqtrdi 2258 . . 3 (𝜑 → ((𝑀𝑀) + 1) = 1)
2625oveq1d 5989 . 2 (𝜑 → (((𝑀𝑀) + 1)(.g𝐺)𝐶) = (1(.g𝐺)𝐶))
2716, 17mulg1 13632 . . 3 (𝐶𝐵 → (1(.g𝐺)𝐶) = 𝐶)
2814, 27syl 14 . 2 (𝜑 → (1(.g𝐺)𝐶) = 𝐶)
2920, 26, 283eqtrd 2246 1 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wnf 1486  wcel 2180  wnfc 2339  {csn 3646  cmpt 4124  cfv 5294  (class class class)co 5974  0cc0 7967  1c1 7968   + caddc 7970  cmin 8285  cz 9414  cuz 9690  ...cfz 10172  Basecbs 12998   Σg cgsu 13256  Mndcmnd 13415  .gcmg 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-1o 6532  df-er 6650  df-en 6858  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-minusg 13503  df-mulg 13623
This theorem is referenced by:  gsumfzfsumlemm  14516
  Copyright terms: Public domain W3C validator