| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsumfzsnfd | GIF version | ||
| Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumfzsnd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
| gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
| gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
| Ref | Expression |
|---|---|
| gsumfzsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
| 2 | elsni 3652 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
| 3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
| 4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
| 5 | 1, 4 | mpteq2da 4137 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 6 | 5 | oveq2d 5967 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 7 | gsumfzsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 8 | fzsn 10195 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 10 | 9 | mpteq1d 4133 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
| 11 | 10 | oveq2d 5967 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
| 12 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 13 | 7 | uzidd 9670 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 14 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
| 15 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
| 16 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 17 | eqid 2206 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 18 | 15, 16, 17 | gsumfzconstf 13722 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 19 | 12, 13, 14, 18 | syl3anc 1250 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 20 | 6, 11, 19 | 3eqtr2d 2245 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
| 21 | 7 | zcnd 9503 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 22 | 21 | subidd 8378 | . . . . 5 ⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
| 23 | 22 | oveq1d 5966 | . . . 4 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = (0 + 1)) |
| 24 | 0p1e1 9157 | . . . 4 ⊢ (0 + 1) = 1 | |
| 25 | 23, 24 | eqtrdi 2255 | . . 3 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = 1) |
| 26 | 25 | oveq1d 5966 | . 2 ⊢ (𝜑 → (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
| 27 | 16, 17 | mulg1 13509 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 28 | 14, 27 | syl 14 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
| 29 | 20, 26, 28 | 3eqtrd 2243 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 {csn 3634 ↦ cmpt 4109 ‘cfv 5276 (class class class)co 5951 0cc0 7932 1c1 7933 + caddc 7935 − cmin 8250 ℤcz 9379 ℤ≥cuz 9655 ...cfz 10137 Basecbs 12876 Σg cgsu 13133 Mndcmnd 13292 .gcmg 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-igsum 13135 df-minusg 13380 df-mulg 13500 |
| This theorem is referenced by: gsumfzfsumlemm 14393 |
| Copyright terms: Public domain | W3C validator |