![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gsumfzsnfd | GIF version |
Description: Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.) |
Ref | Expression |
---|---|
gsumsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumfzsnd.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsumsnd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
gsumsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) |
gsumsnfd.p | ⊢ Ⅎ𝑘𝜑 |
gsumsnfd.c | ⊢ Ⅎ𝑘𝐶 |
Ref | Expression |
---|---|
gsumfzsnfd | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnfd.p | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
2 | elsni 3636 | . . . . . 6 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
3 | gsumsnd.s | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐶) | |
4 | 2, 3 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝐴 = 𝐶) |
5 | 1, 4 | mpteq2da 4118 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
6 | 5 | oveq2d 5934 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
7 | gsumfzsnd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
8 | fzsn 10132 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
10 | 9 | mpteq1d 4114 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶) = (𝑘 ∈ {𝑀} ↦ 𝐶)) |
11 | 10 | oveq2d 5934 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐶))) |
12 | gsumsnd.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
13 | 7 | uzidd 9607 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
14 | gsumsnd.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
15 | gsumsnfd.c | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
16 | gsumsnd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
17 | eqid 2193 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
18 | 15, 16, 17 | gsumfzconstf 13412 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝐶 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
19 | 12, 13, 14, 18 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐶)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
20 | 6, 11, 19 | 3eqtr2d 2232 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶)) |
21 | 7 | zcnd 9440 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
22 | 21 | subidd 8318 | . . . . 5 ⊢ (𝜑 → (𝑀 − 𝑀) = 0) |
23 | 22 | oveq1d 5933 | . . . 4 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = (0 + 1)) |
24 | 0p1e1 9096 | . . . 4 ⊢ (0 + 1) = 1 | |
25 | 23, 24 | eqtrdi 2242 | . . 3 ⊢ (𝜑 → ((𝑀 − 𝑀) + 1) = 1) |
26 | 25 | oveq1d 5933 | . 2 ⊢ (𝜑 → (((𝑀 − 𝑀) + 1)(.g‘𝐺)𝐶) = (1(.g‘𝐺)𝐶)) |
27 | 16, 17 | mulg1 13199 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (1(.g‘𝐺)𝐶) = 𝐶) |
28 | 14, 27 | syl 14 | . 2 ⊢ (𝜑 → (1(.g‘𝐺)𝐶) = 𝐶) |
29 | 20, 26, 28 | 3eqtrd 2230 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 {csn 3618 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 − cmin 8190 ℤcz 9317 ℤ≥cuz 9592 ...cfz 10074 Basecbs 12618 Σg cgsu 12868 Mndcmnd 12997 .gcmg 13189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-1o 6469 df-er 6587 df-en 6795 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-fz 10075 df-seqfrec 10519 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-igsum 12870 df-minusg 13076 df-mulg 13190 |
This theorem is referenced by: gsumfzfsumlemm 14075 |
Copyright terms: Public domain | W3C validator |