| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusex | GIF version | ||
| Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| qusex | ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ V) |
| 3 | elex 2811 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ∼ ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ∼ ∈ V) |
| 5 | basfn 13091 | . . . . . 6 ⊢ Base Fn V | |
| 6 | funfvex 5644 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 7 | 6 | funfni 5423 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 8 | 5, 2, 7 | sylancr 414 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (Base‘𝑅) ∈ V) |
| 9 | 8 | mptexd 5866 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V) |
| 10 | simpl 109 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ 𝑉) | |
| 11 | imasex 13338 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) | |
| 12 | 9, 10, 11 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) |
| 13 | fveq2 5627 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 14 | 13 | mpteq1d 4169 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒)) |
| 15 | id 19 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 16 | 14, 15 | oveq12d 6019 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅)) |
| 17 | eceq2 6717 | . . . . . 6 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 18 | 17 | mpteq2dv 4175 | . . . . 5 ⊢ (𝑒 = ∼ → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ )) |
| 19 | 18 | oveq1d 6016 | . . . 4 ⊢ (𝑒 = ∼ → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 20 | df-qus 13336 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 21 | 16, 19, 20 | ovmpog 6139 | . . 3 ⊢ ((𝑅 ∈ V ∧ ∼ ∈ V ∧ ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 22 | 2, 4, 12, 21 | syl3anc 1271 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 23 | 22, 12 | eqeltrd 2306 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 Fn wfn 5313 ‘cfv 5318 (class class class)co 6001 [cec 6678 Basecbs 13032 “s cimas 13332 /s cqus 13333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-ec 6682 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mulr 13124 df-iimas 13335 df-qus 13336 |
| This theorem is referenced by: znval 14600 znle 14601 znbaslemnn 14603 |
| Copyright terms: Public domain | W3C validator |