ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusex GIF version

Theorem qusex 12908
Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
qusex ((𝑅𝑉𝑊) → (𝑅 /s ) ∈ V)

Proof of Theorem qusex
Dummy variables 𝑒 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝑅𝑉𝑅 ∈ V)
21adantr 276 . . 3 ((𝑅𝑉𝑊) → 𝑅 ∈ V)
3 elex 2771 . . . 4 ( 𝑊 ∈ V)
43adantl 277 . . 3 ((𝑅𝑉𝑊) → ∈ V)
5 basfn 12676 . . . . . 6 Base Fn V
6 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
76funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
85, 2, 7sylancr 414 . . . . 5 ((𝑅𝑉𝑊) → (Base‘𝑅) ∈ V)
98mptexd 5785 . . . 4 ((𝑅𝑉𝑊) → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) ∈ V)
10 simpl 109 . . . 4 ((𝑅𝑉𝑊) → 𝑅𝑉)
11 imasex 12888 . . . 4 (((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) ∈ V ∧ 𝑅𝑉) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅) ∈ V)
129, 10, 11syl2anc 411 . . 3 ((𝑅𝑉𝑊) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅) ∈ V)
13 fveq2 5554 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1413mpteq1d 4114 . . . . 5 (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒))
15 id 19 . . . . 5 (𝑟 = 𝑅𝑟 = 𝑅)
1614, 15oveq12d 5936 . . . 4 (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅))
17 eceq2 6624 . . . . . 6 (𝑒 = → [𝑥]𝑒 = [𝑥] )
1817mpteq2dv 4120 . . . . 5 (𝑒 = → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ))
1918oveq1d 5933 . . . 4 (𝑒 = → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅))
20 df-qus 12886 . . . 4 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
2116, 19, 20ovmpog 6053 . . 3 ((𝑅 ∈ V ∧ ∈ V ∧ ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅) ∈ V) → (𝑅 /s ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅))
222, 4, 12, 21syl3anc 1249 . 2 ((𝑅𝑉𝑊) → (𝑅 /s ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ) “s 𝑅))
2322, 12eqeltrd 2270 1 ((𝑅𝑉𝑊) → (𝑅 /s ) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cmpt 4090   Fn wfn 5249  cfv 5254  (class class class)co 5918  [cec 6585  Basecbs 12618  s cimas 12882   /s cqus 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-ec 6589  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885  df-qus 12886
This theorem is referenced by:  znval  14124  znle  14125  znbaslemnn  14127
  Copyright terms: Public domain W3C validator