| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qusex | GIF version | ||
| Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.) | 
| Ref | Expression | 
|---|---|
| qusex | ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ V) | 
| 3 | elex 2774 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ∼ ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ∼ ∈ V) | 
| 5 | basfn 12736 | . . . . . 6 ⊢ Base Fn V | |
| 6 | funfvex 5575 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 7 | 6 | funfni 5358 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) | 
| 8 | 5, 2, 7 | sylancr 414 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (Base‘𝑅) ∈ V) | 
| 9 | 8 | mptexd 5789 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V) | 
| 10 | simpl 109 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ 𝑉) | |
| 11 | imasex 12948 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) | |
| 12 | 9, 10, 11 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) | 
| 13 | fveq2 5558 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 14 | 13 | mpteq1d 4118 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒)) | 
| 15 | id 19 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 16 | 14, 15 | oveq12d 5940 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅)) | 
| 17 | eceq2 6629 | . . . . . 6 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 18 | 17 | mpteq2dv 4124 | . . . . 5 ⊢ (𝑒 = ∼ → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ )) | 
| 19 | 18 | oveq1d 5937 | . . . 4 ⊢ (𝑒 = ∼ → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) | 
| 20 | df-qus 12946 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 21 | 16, 19, 20 | ovmpog 6057 | . . 3 ⊢ ((𝑅 ∈ V ∧ ∼ ∈ V ∧ ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) | 
| 22 | 2, 4, 12, 21 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) | 
| 23 | 22, 12 | eqeltrd 2273 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ↦ cmpt 4094 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 [cec 6590 Basecbs 12678 “s cimas 12942 /s cqus 12943 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-ec 6594 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-iimas 12945 df-qus 12946 | 
| This theorem is referenced by: znval 14192 znle 14193 znbaslemnn 14195 | 
| Copyright terms: Public domain | W3C validator |