| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusex | GIF version | ||
| Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| qusex | ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ V) |
| 3 | elex 2788 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ∼ ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ∼ ∈ V) |
| 5 | basfn 13005 | . . . . . 6 ⊢ Base Fn V | |
| 6 | funfvex 5616 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 7 | 6 | funfni 5395 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 8 | 5, 2, 7 | sylancr 414 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (Base‘𝑅) ∈ V) |
| 9 | 8 | mptexd 5834 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V) |
| 10 | simpl 109 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ 𝑉) | |
| 11 | imasex 13252 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) | |
| 12 | 9, 10, 11 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) |
| 13 | fveq2 5599 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 14 | 13 | mpteq1d 4145 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒)) |
| 15 | id 19 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 16 | 14, 15 | oveq12d 5985 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅)) |
| 17 | eceq2 6680 | . . . . . 6 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 18 | 17 | mpteq2dv 4151 | . . . . 5 ⊢ (𝑒 = ∼ → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ )) |
| 19 | 18 | oveq1d 5982 | . . . 4 ⊢ (𝑒 = ∼ → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 20 | df-qus 13250 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 21 | 16, 19, 20 | ovmpog 6103 | . . 3 ⊢ ((𝑅 ∈ V ∧ ∼ ∈ V ∧ ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 22 | 2, 4, 12, 21 | syl3anc 1250 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 23 | 22, 12 | eqeltrd 2284 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ↦ cmpt 4121 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 [cec 6641 Basecbs 12947 “s cimas 13246 /s cqus 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-ec 6645 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-iimas 13249 df-qus 13250 |
| This theorem is referenced by: znval 14513 znle 14514 znbaslemnn 14516 |
| Copyright terms: Public domain | W3C validator |