| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusex | GIF version | ||
| Description: Existence of a quotient structure. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| qusex | ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ V) |
| 3 | elex 2783 | . . . 4 ⊢ ( ∼ ∈ 𝑊 → ∼ ∈ V) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ∼ ∈ V) |
| 5 | basfn 12923 | . . . . . 6 ⊢ Base Fn V | |
| 6 | funfvex 5595 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 7 | 6 | funfni 5377 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 8 | 5, 2, 7 | sylancr 414 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (Base‘𝑅) ∈ V) |
| 9 | 8 | mptexd 5813 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V) |
| 10 | simpl 109 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → 𝑅 ∈ 𝑉) | |
| 11 | imasex 13170 | . . . 4 ⊢ (((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) ∈ V ∧ 𝑅 ∈ 𝑉) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) | |
| 12 | 9, 10, 11 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) |
| 13 | fveq2 5578 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) | |
| 14 | 13 | mpteq1d 4130 | . . . . 5 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒)) |
| 15 | id 19 | . . . . 5 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 16 | 14, 15 | oveq12d 5964 | . . . 4 ⊢ (𝑟 = 𝑅 → ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅)) |
| 17 | eceq2 6659 | . . . . . 6 ⊢ (𝑒 = ∼ → [𝑥]𝑒 = [𝑥] ∼ ) | |
| 18 | 17 | mpteq2dv 4136 | . . . . 5 ⊢ (𝑒 = ∼ → (𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) = (𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ )) |
| 19 | 18 | oveq1d 5961 | . . . 4 ⊢ (𝑒 = ∼ → ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥]𝑒) “s 𝑅) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 20 | df-qus 13168 | . . . 4 ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) | |
| 21 | 16, 19, 20 | ovmpog 6082 | . . 3 ⊢ ((𝑅 ∈ V ∧ ∼ ∈ V ∧ ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅) ∈ V) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 22 | 2, 4, 12, 21 | syl3anc 1250 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) = ((𝑥 ∈ (Base‘𝑅) ↦ [𝑥] ∼ ) “s 𝑅)) |
| 23 | 22, 12 | eqeltrd 2282 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ ∼ ∈ 𝑊) → (𝑅 /s ∼ ) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ↦ cmpt 4106 Fn wfn 5267 ‘cfv 5272 (class class class)co 5946 [cec 6620 Basecbs 12865 “s cimas 13164 /s cqus 13165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-ec 6624 df-inn 9039 df-2 9097 df-3 9098 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-mulr 12956 df-iimas 13167 df-qus 13168 |
| This theorem is referenced by: znval 14431 znle 14432 znbaslemnn 14434 |
| Copyright terms: Public domain | W3C validator |