ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrd0g GIF version

Theorem swrd0g 11113
Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrd0g ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrd0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 4171 . 2 ∅ ∈ V
2 swrdval 11101 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅))
3 fzonlt0 10291 . . . . . . . . . . . 12 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (𝐹..^𝐿) = ∅))
43biimprd 158 . . . . . . . . . . 11 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹..^𝐿) = ∅ → ¬ 𝐹 < 𝐿))
54con2d 625 . . . . . . . . . 10 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 → ¬ (𝐹..^𝐿) = ∅))
65impcom 125 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) = ∅)
7 ss0 3501 . . . . . . . . 9 ((𝐹..^𝐿) ⊆ ∅ → (𝐹..^𝐿) = ∅)
86, 7nsyl 629 . . . . . . . 8 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ ∅)
9 dm0 4892 . . . . . . . . . 10 dom ∅ = ∅
109a1i 9 . . . . . . . . 9 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1110sseq2d 3223 . . . . . . . 8 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ dom ∅ ↔ (𝐹..^𝐿) ⊆ ∅))
128, 11mtbird 675 . . . . . . 7 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom ∅)
1312iffalsed 3581 . . . . . 6 ((𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
1413ancoms 268 . . . . 5 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐹 < 𝐿) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
15 ssidd 3214 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ∅ ⊆ ∅)
163biimpac 298 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) = ∅)
179a1i 9 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom ∅ = ∅)
1815, 16, 173sstr4d 3238 . . . . . . . 8 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐹..^𝐿) ⊆ dom ∅)
1918iftrued 3578 . . . . . . 7 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))))
20 zre 9376 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
21 zre 9376 . . . . . . . . . . . . . 14 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
22 lenlt 8148 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (𝐿𝐹 ↔ ¬ 𝐹 < 𝐿))
2322bicomd 141 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℝ ∧ 𝐹 ∈ ℝ) → (¬ 𝐹 < 𝐿𝐿𝐹))
2420, 21, 23syl2anr 290 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿𝐿𝐹))
25 fzo0n 10290 . . . . . . . . . . . . 13 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 ↔ (0..^(𝐿𝐹)) = ∅))
2624, 25bitrd 188 . . . . . . . . . . . 12 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 𝐹 < 𝐿 ↔ (0..^(𝐿𝐹)) = ∅))
2726biimpac 298 . . . . . . . . . . 11 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (0..^(𝐿𝐹)) = ∅)
2827mpteq1d 4129 . . . . . . . . . 10 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
2928dmeqd 4880 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))))
30 ral0 3562 . . . . . . . . . 10 𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V
31 dmmptg 5180 . . . . . . . . . 10 (∀𝑥 ∈ ∅ (∅‘(𝑥 + 𝐹)) ∈ V → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3230, 31mp1i 10 . . . . . . . . 9 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ ∅ ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3329, 32eqtrd 2238 . . . . . . . 8 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
34 mptrel 4806 . . . . . . . . 9 Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹)))
35 reldm0 4896 . . . . . . . . 9 (Rel (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3634, 35mp1i 10 . . . . . . . 8 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅ ↔ dom (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅))
3733, 36mpbird 167 . . . . . . 7 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))) = ∅)
3819, 37eqtrd 2238 . . . . . 6 ((¬ 𝐹 < 𝐿 ∧ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
3938ancoms 268 . . . . 5 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ ¬ 𝐹 < 𝐿) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
40 zdclt 9450 . . . . . 6 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID 𝐹 < 𝐿)
41 exmiddc 838 . . . . . 6 (DECID 𝐹 < 𝐿 → (𝐹 < 𝐿 ∨ ¬ 𝐹 < 𝐿))
4240, 41syl 14 . . . . 5 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ∨ ¬ 𝐹 < 𝐿))
4314, 39, 42mpjaodan 800 . . . 4 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
44433adant1 1018 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → if((𝐹..^𝐿) ⊆ dom ∅, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (∅‘(𝑥 + 𝐹))), ∅) = ∅)
452, 44eqtrd 2238 . 2 ((∅ ∈ V ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
461, 45mp3an1 1337 1 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  wss 3166  c0 3460  ifcif 3571  cop 3636   class class class wbr 4044  cmpt 4105  dom cdm 4675  Rel wrel 4680  cfv 5271  (class class class)co 5944  cr 7924  0cc0 7925   + caddc 7928   < clt 8107  cle 8108  cmin 8243  cz 9372  ..^cfzo 10264   substr csubstr 11098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-substr 11099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator