Step | Hyp | Ref
| Expression |
1 | | simp2 1000 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | 3simpb 997 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵)) |
3 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) |
4 | 3 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) |
5 | 4 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑀 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))) |
6 | | oveq1 5925 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑤 − 𝑀) = (𝑀 − 𝑀)) |
7 | 6 | oveq1d 5933 |
. . . . . 6
⊢ (𝑤 = 𝑀 → ((𝑤 − 𝑀) + 1) = ((𝑀 − 𝑀) + 1)) |
8 | 7 | oveq1d 5933 |
. . . . 5
⊢ (𝑤 = 𝑀 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑀 − 𝑀) + 1) · 𝑋)) |
9 | 5, 8 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋))) |
10 | 9 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋)))) |
11 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗)) |
12 | 11 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) |
13 | 12 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑗 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))) |
14 | | oveq1 5925 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑤 − 𝑀) = (𝑗 − 𝑀)) |
15 | 14 | oveq1d 5933 |
. . . . . 6
⊢ (𝑤 = 𝑗 → ((𝑤 − 𝑀) + 1) = ((𝑗 − 𝑀) + 1)) |
16 | 15 | oveq1d 5933 |
. . . . 5
⊢ (𝑤 = 𝑗 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑗 − 𝑀) + 1) · 𝑋)) |
17 | 13, 16 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑗 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋))) |
18 | 17 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑗 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)))) |
19 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1))) |
20 | 19 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) |
21 | 20 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋))) |
22 | | oveq1 5925 |
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑤 − 𝑀) = ((𝑗 + 1) − 𝑀)) |
23 | 22 | oveq1d 5933 |
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → ((𝑤 − 𝑀) + 1) = (((𝑗 + 1) − 𝑀) + 1)) |
24 | 23 | oveq1d 5933 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (((𝑤 − 𝑀) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) |
25 | 21, 24 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = (𝑗 + 1) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))) |
26 | 25 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑗 + 1) → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) |
27 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) |
28 | 27 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) |
29 | 28 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) |
30 | | oveq1 5925 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑤 − 𝑀) = (𝑁 − 𝑀)) |
31 | 30 | oveq1d 5933 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝑤 − 𝑀) + 1) = ((𝑁 − 𝑀) + 1)) |
32 | 31 | oveq1d 5933 |
. . . . 5
⊢ (𝑤 = 𝑁 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑁 − 𝑀) + 1) · 𝑋)) |
33 | 29, 32 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋))) |
34 | 33 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)))) |
35 | | simplr 528 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ 𝐵) |
36 | | gsumconst.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
37 | | gsumconst.m |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
38 | 36, 37 | mulg1 13199 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
39 | 35, 38 | syl 14 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (1 · 𝑋) = 𝑋) |
40 | | zcn 9322 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
41 | 40 | subidd 8318 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 𝑀) = 0) |
42 | 41 | oveq1d 5933 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑀 − 𝑀) + 1) = (0 + 1)) |
43 | | 0p1e1 9096 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
44 | 42, 43 | eqtrdi 2242 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → ((𝑀 − 𝑀) + 1) = 1) |
45 | 44 | oveq1d 5933 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → (((𝑀 − 𝑀) + 1) · 𝑋) = (1 · 𝑋)) |
46 | 45 | adantl 277 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (((𝑀 − 𝑀) + 1) · 𝑋) = (1 · 𝑋)) |
47 | | eqid 2193 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
48 | | simpll 527 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Mnd) |
49 | | uzid 9606 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
50 | 49 | adantl 277 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) |
51 | | simpllr 534 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑋 ∈ 𝐵) |
52 | 51 | fmpttd 5713 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋):(𝑀...𝑀)⟶𝐵) |
53 | 36, 47, 48, 50, 52 | gsumval2 12980 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀)) |
54 | | simpr 110 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) |
55 | 54, 54 | fzfigd 10502 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) ∈ Fin) |
56 | 55 | mptexd 5785 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V) |
57 | | plusgslid 12730 |
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
58 | 57 | slotex 12645 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd →
(+g‘𝐺)
∈ V) |
59 | 48, 58 | syl 14 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) →
(+g‘𝐺)
∈ V) |
60 | | seq1g 10534 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V ∧ (+g‘𝐺) ∈ V) → (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀)) |
61 | 54, 56, 59, 60 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀)) |
62 | | eqid 2193 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) |
63 | | eqidd 2194 |
. . . . . . 7
⊢ (𝑘 = 𝑀 → 𝑋 = 𝑋) |
64 | | elfz3 10100 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) |
65 | 64 | adantl 277 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (𝑀...𝑀)) |
66 | 62, 63, 65, 35 | fvmptd3 5651 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀) = 𝑋) |
67 | 53, 61, 66 | 3eqtrd 2230 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = 𝑋) |
68 | 39, 46, 67 | 3eqtr4rd 2237 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋)) |
69 | 68 | expcom 116 |
. . 3
⊢ (𝑀 ∈ ℤ → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋))) |
70 | | fzssp1 10133 |
. . . . . . . . . . . . 13
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) |
71 | 70 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))) |
72 | 71 | resmptd 4993 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) |
73 | 72 | oveq2d 5934 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))) |
74 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) |
75 | 73, 74 | eqtrd 2226 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (((𝑗 − 𝑀) + 1) · 𝑋)) |
76 | | eqid 2193 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) |
77 | | eqidd 2194 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → 𝑋 = 𝑋) |
78 | | simplr 528 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
79 | | peano2uz 9648 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
80 | | eluzfz2 10098 |
. . . . . . . . . . 11
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
81 | 78, 79, 80 | 3syl 17 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
82 | | simpllr 534 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑋 ∈ 𝐵) |
83 | 76, 77, 81, 82 | fvmptd3 5651 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)) = 𝑋) |
84 | 75, 83 | oveq12d 5936 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g‘𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) |
85 | | simplll 533 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝐺 ∈ Mnd) |
86 | | eluzel2 9597 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
87 | 78, 86 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑀 ∈ ℤ) |
88 | | simpllr 534 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑋 ∈ 𝐵) |
89 | 88 | fmpttd 5713 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵) |
90 | 89 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵) |
91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 12981 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g‘𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)))) |
92 | | uznn0sub 9624 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 − 𝑀) ∈
ℕ0) |
93 | | nn0p1nn 9279 |
. . . . . . . . . 10
⊢ ((𝑗 − 𝑀) ∈ ℕ0 → ((𝑗 − 𝑀) + 1) ∈ ℕ) |
94 | 78, 92, 93 | 3syl 17 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑗 − 𝑀) + 1) ∈ ℕ) |
95 | 36, 37, 47 | mulgnnp1 13200 |
. . . . . . . . 9
⊢ ((((𝑗 − 𝑀) + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) |
96 | 94, 82, 95 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) |
97 | 84, 91, 96 | 3eqtr4d 2236 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 − 𝑀) + 1) + 1) · 𝑋)) |
98 | | eluzelcn 9603 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℂ) |
99 | 86 | zcnd 9440 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℂ) |
100 | 99 | negcld 8317 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → -𝑀 ∈ ℂ) |
101 | | 1cnd 8035 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 1 ∈ ℂ) |
102 | 98, 100, 101 | add32d 8187 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 + 1) + -𝑀)) |
103 | 98, 99 | negsubd 8336 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + -𝑀) = (𝑗 − 𝑀)) |
104 | 103 | oveq1d 5933 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 − 𝑀) + 1)) |
105 | 98, 101 | addcld 8039 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ ℂ) |
106 | 105, 99 | negsubd 8336 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + 1) + -𝑀) = ((𝑗 + 1) − 𝑀)) |
107 | 102, 104,
106 | 3eqtr3d 2234 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 − 𝑀) + 1) = ((𝑗 + 1) − 𝑀)) |
108 | 107 | oveq1d 5933 |
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (((𝑗 − 𝑀) + 1) + 1) = (((𝑗 + 1) − 𝑀) + 1)) |
109 | 108 | oveq1d 5933 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) |
110 | 78, 109 | syl 14 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) |
111 | 97, 110 | eqtrd 2226 |
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) |
112 | 111 | ex 115 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))) |
113 | 112 | expcom 116 |
. . . 4
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) |
114 | 113 | a2d 26 |
. . 3
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) |
115 | 10, 18, 26, 34, 69, 114 | uzind4 9653 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋))) |
116 | 1, 2, 115 | sylc 62 |
1
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) |