ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzconst GIF version

Theorem gsumfzconst 13414
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
Hypotheses
Ref Expression
gsumconst.b 𝐵 = (Base‘𝐺)
gsumconst.m · = (.g𝐺)
Assertion
Ref Expression
gsumfzconst ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋
Allowed substitution hint:   · (𝑘)

Proof of Theorem gsumfzconst
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ𝑀))
2 3simpb 997 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 ∈ Mnd ∧ 𝑋𝐵))
3 oveq2 5927 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
43mpteq1d 4115 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))
54oveq2d 5935 . . . . 5 (𝑤 = 𝑀 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)))
6 oveq1 5926 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
76oveq1d 5934 . . . . . 6 (𝑤 = 𝑀 → ((𝑤𝑀) + 1) = ((𝑀𝑀) + 1))
87oveq1d 5934 . . . . 5 (𝑤 = 𝑀 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑀𝑀) + 1) · 𝑋))
95, 8eqeq12d 2208 . . . 4 (𝑤 = 𝑀 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋)))
109imbi2d 230 . . 3 (𝑤 = 𝑀 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋))))
11 oveq2 5927 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1211mpteq1d 4115 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))
1312oveq2d 5935 . . . . 5 (𝑤 = 𝑗 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)))
14 oveq1 5926 . . . . . . 7 (𝑤 = 𝑗 → (𝑤𝑀) = (𝑗𝑀))
1514oveq1d 5934 . . . . . 6 (𝑤 = 𝑗 → ((𝑤𝑀) + 1) = ((𝑗𝑀) + 1))
1615oveq1d 5934 . . . . 5 (𝑤 = 𝑗 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑗𝑀) + 1) · 𝑋))
1713, 16eqeq12d 2208 . . . 4 (𝑤 = 𝑗 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)))
1817imbi2d 230 . . 3 (𝑤 = 𝑗 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋))))
19 oveq2 5927 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
2019mpteq1d 4115 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋))
2120oveq2d 5935 . . . . 5 (𝑤 = (𝑗 + 1) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)))
22 oveq1 5926 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑤𝑀) = ((𝑗 + 1) − 𝑀))
2322oveq1d 5934 . . . . . 6 (𝑤 = (𝑗 + 1) → ((𝑤𝑀) + 1) = (((𝑗 + 1) − 𝑀) + 1))
2423oveq1d 5934 . . . . 5 (𝑤 = (𝑗 + 1) → (((𝑤𝑀) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
2521, 24eqeq12d 2208 . . . 4 (𝑤 = (𝑗 + 1) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))
2625imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
27 oveq2 5927 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2827mpteq1d 4115 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))
2928oveq2d 5935 . . . . 5 (𝑤 = 𝑁 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))
30 oveq1 5926 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
3130oveq1d 5934 . . . . . 6 (𝑤 = 𝑁 → ((𝑤𝑀) + 1) = ((𝑁𝑀) + 1))
3231oveq1d 5934 . . . . 5 (𝑤 = 𝑁 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑁𝑀) + 1) · 𝑋))
3329, 32eqeq12d 2208 . . . 4 (𝑤 = 𝑁 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋)))
3433imbi2d 230 . . 3 (𝑤 = 𝑁 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))))
35 simplr 528 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑋𝐵)
36 gsumconst.b . . . . . . 7 𝐵 = (Base‘𝐺)
37 gsumconst.m . . . . . . 7 · = (.g𝐺)
3836, 37mulg1 13202 . . . . . 6 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
3935, 38syl 14 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (1 · 𝑋) = 𝑋)
40 zcn 9325 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4140subidd 8320 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀𝑀) = 0)
4241oveq1d 5934 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀𝑀) + 1) = (0 + 1))
43 0p1e1 9098 . . . . . . . 8 (0 + 1) = 1
4442, 43eqtrdi 2242 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀𝑀) + 1) = 1)
4544oveq1d 5934 . . . . . 6 (𝑀 ∈ ℤ → (((𝑀𝑀) + 1) · 𝑋) = (1 · 𝑋))
4645adantl 277 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (((𝑀𝑀) + 1) · 𝑋) = (1 · 𝑋))
47 eqid 2193 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 simpll 527 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Mnd)
49 uzid 9609 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5049adantl 277 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ𝑀))
51 simpllr 534 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑋𝐵)
5251fmpttd 5714 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋):(𝑀...𝑀)⟶𝐵)
5336, 47, 48, 50, 52gsumval2 12983 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀))
54 simpr 110 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
5554, 54fzfigd 10505 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) ∈ Fin)
5655mptexd 5786 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V)
57 plusgslid 12733 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
5857slotex 12648 . . . . . . . 8 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
5948, 58syl 14 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (+g𝐺) ∈ V)
60 seq1g 10537 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V ∧ (+g𝐺) ∈ V) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀))
6154, 56, 59, 60syl3anc 1249 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀))
62 eqid 2193 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)
63 eqidd 2194 . . . . . . 7 (𝑘 = 𝑀𝑋 = 𝑋)
64 elfz3 10103 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
6564adantl 277 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (𝑀...𝑀))
6662, 63, 65, 35fvmptd3 5652 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀) = 𝑋)
6753, 61, 663eqtrd 2230 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = 𝑋)
6839, 46, 673eqtr4rd 2237 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋))
6968expcom 116 . . 3 (𝑀 ∈ ℤ → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋)))
70 fzssp1 10136 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
7170a1i 9 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)))
7271resmptd 4994 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))
7372oveq2d 5935 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)))
74 simpr 110 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋))
7573, 74eqtrd 2226 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (((𝑗𝑀) + 1) · 𝑋))
76 eqid 2193 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)
77 eqidd 2194 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝑋 = 𝑋)
78 simplr 528 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑗 ∈ (ℤ𝑀))
79 peano2uz 9651 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
80 eluzfz2 10101 . . . . . . . . . . 11 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
8178, 79, 803syl 17 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
82 simpllr 534 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑋𝐵)
8376, 77, 81, 82fvmptd3 5652 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)) = 𝑋)
8475, 83oveq12d 5937 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
85 simplll 533 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝐺 ∈ Mnd)
86 eluzel2 9600 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
8778, 86syl 14 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑀 ∈ ℤ)
88 simpllr 534 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑋𝐵)
8988fmpttd 5714 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵)
9089adantr 276 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵)
9136, 47, 85, 87, 78, 90gsumsplit1r 12984 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))))
92 uznn0sub 9627 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
93 nn0p1nn 9282 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
9478, 92, 933syl 17 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑗𝑀) + 1) ∈ ℕ)
9536, 37, 47mulgnnp1 13203 . . . . . . . . 9 ((((𝑗𝑀) + 1) ∈ ℕ ∧ 𝑋𝐵) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
9694, 82, 95syl2anc 411 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
9784, 91, 963eqtr4d 2236 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗𝑀) + 1) + 1) · 𝑋))
98 eluzelcn 9606 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℂ)
9986zcnd 9443 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
10099negcld 8319 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → -𝑀 ∈ ℂ)
101 1cnd 8037 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℂ)
10298, 100, 101add32d 8189 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 + 1) + -𝑀))
10398, 99negsubd 8338 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + -𝑀) = (𝑗𝑀))
104103oveq1d 5934 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗𝑀) + 1))
10598, 101addcld 8041 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ ℂ)
106105, 99negsubd 8338 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + 1) + -𝑀) = ((𝑗 + 1) − 𝑀))
107102, 104, 1063eqtr3d 2234 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → ((𝑗𝑀) + 1) = ((𝑗 + 1) − 𝑀))
108107oveq1d 5934 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → (((𝑗𝑀) + 1) + 1) = (((𝑗 + 1) − 𝑀) + 1))
109108oveq1d 5934 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
11078, 109syl 14 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
11197, 110eqtrd 2226 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
112111ex 115 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))
113112expcom 116 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
114113a2d 26 . . 3 (𝑗 ∈ (ℤ𝑀) → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
11510, 18, 26, 34, 69, 114uzind4 9656 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋)))
1161, 2, 115sylc 62 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  cmpt 4091  cres 4662  wf 5251  cfv 5255  (class class class)co 5919  Fincfn 6796  0cc0 7874  1c1 7875   + caddc 7877  cmin 8192  -cneg 8193  cn 8984  0cn0 9243  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  Basecbs 12621  +gcplusg 12698   Σg cgsu 12871  Mndcmnd 13000  .gcmg 13192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-seqfrec 10522  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-igsum 12873  df-minusg 13079  df-mulg 13193
This theorem is referenced by:  gsumfzconstf  13415  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator