ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzconst GIF version

Theorem gsumfzconst 13471
Description: Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
Hypotheses
Ref Expression
gsumconst.b 𝐵 = (Base‘𝐺)
gsumconst.m · = (.g𝐺)
Assertion
Ref Expression
gsumfzconst ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝑘,𝑋
Allowed substitution hint:   · (𝑘)

Proof of Theorem gsumfzconst
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ𝑀))
2 3simpb 997 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 ∈ Mnd ∧ 𝑋𝐵))
3 oveq2 5930 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
43mpteq1d 4118 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))
54oveq2d 5938 . . . . 5 (𝑤 = 𝑀 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)))
6 oveq1 5929 . . . . . . 7 (𝑤 = 𝑀 → (𝑤𝑀) = (𝑀𝑀))
76oveq1d 5937 . . . . . 6 (𝑤 = 𝑀 → ((𝑤𝑀) + 1) = ((𝑀𝑀) + 1))
87oveq1d 5937 . . . . 5 (𝑤 = 𝑀 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑀𝑀) + 1) · 𝑋))
95, 8eqeq12d 2211 . . . 4 (𝑤 = 𝑀 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋)))
109imbi2d 230 . . 3 (𝑤 = 𝑀 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋))))
11 oveq2 5930 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1211mpteq1d 4118 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))
1312oveq2d 5938 . . . . 5 (𝑤 = 𝑗 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)))
14 oveq1 5929 . . . . . . 7 (𝑤 = 𝑗 → (𝑤𝑀) = (𝑗𝑀))
1514oveq1d 5937 . . . . . 6 (𝑤 = 𝑗 → ((𝑤𝑀) + 1) = ((𝑗𝑀) + 1))
1615oveq1d 5937 . . . . 5 (𝑤 = 𝑗 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑗𝑀) + 1) · 𝑋))
1713, 16eqeq12d 2211 . . . 4 (𝑤 = 𝑗 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)))
1817imbi2d 230 . . 3 (𝑤 = 𝑗 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋))))
19 oveq2 5930 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
2019mpteq1d 4118 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋))
2120oveq2d 5938 . . . . 5 (𝑤 = (𝑗 + 1) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)))
22 oveq1 5929 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑤𝑀) = ((𝑗 + 1) − 𝑀))
2322oveq1d 5937 . . . . . 6 (𝑤 = (𝑗 + 1) → ((𝑤𝑀) + 1) = (((𝑗 + 1) − 𝑀) + 1))
2423oveq1d 5937 . . . . 5 (𝑤 = (𝑗 + 1) → (((𝑤𝑀) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
2521, 24eqeq12d 2211 . . . 4 (𝑤 = (𝑗 + 1) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))
2625imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
27 oveq2 5930 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2827mpteq1d 4118 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))
2928oveq2d 5938 . . . . 5 (𝑤 = 𝑁 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)))
30 oveq1 5929 . . . . . . 7 (𝑤 = 𝑁 → (𝑤𝑀) = (𝑁𝑀))
3130oveq1d 5937 . . . . . 6 (𝑤 = 𝑁 → ((𝑤𝑀) + 1) = ((𝑁𝑀) + 1))
3231oveq1d 5937 . . . . 5 (𝑤 = 𝑁 → (((𝑤𝑀) + 1) · 𝑋) = (((𝑁𝑀) + 1) · 𝑋))
3329, 32eqeq12d 2211 . . . 4 (𝑤 = 𝑁 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋)))
3433imbi2d 230 . . 3 (𝑤 = 𝑁 → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))))
35 simplr 528 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑋𝐵)
36 gsumconst.b . . . . . . 7 𝐵 = (Base‘𝐺)
37 gsumconst.m . . . . . . 7 · = (.g𝐺)
3836, 37mulg1 13259 . . . . . 6 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
3935, 38syl 14 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (1 · 𝑋) = 𝑋)
40 zcn 9331 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
4140subidd 8325 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀𝑀) = 0)
4241oveq1d 5937 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀𝑀) + 1) = (0 + 1))
43 0p1e1 9104 . . . . . . . 8 (0 + 1) = 1
4442, 43eqtrdi 2245 . . . . . . 7 (𝑀 ∈ ℤ → ((𝑀𝑀) + 1) = 1)
4544oveq1d 5937 . . . . . 6 (𝑀 ∈ ℤ → (((𝑀𝑀) + 1) · 𝑋) = (1 · 𝑋))
4645adantl 277 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (((𝑀𝑀) + 1) · 𝑋) = (1 · 𝑋))
47 eqid 2196 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 simpll 527 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Mnd)
49 uzid 9615 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
5049adantl 277 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ𝑀))
51 simpllr 534 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑋𝐵)
5251fmpttd 5717 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋):(𝑀...𝑀)⟶𝐵)
5336, 47, 48, 50, 52gsumval2 13040 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀))
54 simpr 110 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
5554, 54fzfigd 10523 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) ∈ Fin)
5655mptexd 5789 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V)
57 plusgslid 12790 . . . . . . . . 9 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
5857slotex 12705 . . . . . . . 8 (𝐺 ∈ Mnd → (+g𝐺) ∈ V)
5948, 58syl 14 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (+g𝐺) ∈ V)
60 seq1g 10555 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V ∧ (+g𝐺) ∈ V) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀))
6154, 56, 59, 60syl3anc 1249 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (seq𝑀((+g𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀))
62 eqid 2196 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)
63 eqidd 2197 . . . . . . 7 (𝑘 = 𝑀𝑋 = 𝑋)
64 elfz3 10109 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
6564adantl 277 . . . . . . 7 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (𝑀...𝑀))
6662, 63, 65, 35fvmptd3 5655 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀) = 𝑋)
6753, 61, 663eqtrd 2233 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = 𝑋)
6839, 46, 673eqtr4rd 2240 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋))
6968expcom 116 . . 3 (𝑀 ∈ ℤ → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀𝑀) + 1) · 𝑋)))
70 fzssp1 10142 . . . . . . . . . . . . 13 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
7170a1i 9 . . . . . . . . . . . 12 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)))
7271resmptd 4997 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))
7372oveq2d 5938 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)))
74 simpr 110 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋))
7573, 74eqtrd 2229 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (((𝑗𝑀) + 1) · 𝑋))
76 eqid 2196 . . . . . . . . . 10 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)
77 eqidd 2197 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝑋 = 𝑋)
78 simplr 528 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑗 ∈ (ℤ𝑀))
79 peano2uz 9657 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
80 eluzfz2 10107 . . . . . . . . . . 11 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
8178, 79, 803syl 17 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
82 simpllr 534 . . . . . . . . . 10 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑋𝐵)
8376, 77, 81, 82fvmptd3 5655 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)) = 𝑋)
8475, 83oveq12d 5940 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
85 simplll 533 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝐺 ∈ Mnd)
86 eluzel2 9606 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
8778, 86syl 14 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → 𝑀 ∈ ℤ)
88 simpllr 534 . . . . . . . . . . 11 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑋𝐵)
8988fmpttd 5717 . . . . . . . . . 10 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵)
9089adantr 276 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵)
9136, 47, 85, 87, 78, 90gsumsplit1r 13041 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))))
92 uznn0sub 9633 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → (𝑗𝑀) ∈ ℕ0)
93 nn0p1nn 9288 . . . . . . . . . 10 ((𝑗𝑀) ∈ ℕ0 → ((𝑗𝑀) + 1) ∈ ℕ)
9478, 92, 933syl 17 . . . . . . . . 9 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝑗𝑀) + 1) ∈ ℕ)
9536, 37, 47mulgnnp1 13260 . . . . . . . . 9 ((((𝑗𝑀) + 1) ∈ ℕ ∧ 𝑋𝐵) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
9694, 82, 95syl2anc 411 . . . . . . . 8 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗𝑀) + 1) · 𝑋)(+g𝐺)𝑋))
9784, 91, 963eqtr4d 2239 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗𝑀) + 1) + 1) · 𝑋))
98 eluzelcn 9612 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℂ)
9986zcnd 9449 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ𝑀) → 𝑀 ∈ ℂ)
10099negcld 8324 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → -𝑀 ∈ ℂ)
101 1cnd 8042 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → 1 ∈ ℂ)
10298, 100, 101add32d 8194 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 + 1) + -𝑀))
10398, 99negsubd 8343 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + -𝑀) = (𝑗𝑀))
104103oveq1d 5937 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗𝑀) + 1))
10598, 101addcld 8046 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ ℂ)
106105, 99negsubd 8343 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → ((𝑗 + 1) + -𝑀) = ((𝑗 + 1) − 𝑀))
107102, 104, 1063eqtr3d 2237 . . . . . . . . . 10 (𝑗 ∈ (ℤ𝑀) → ((𝑗𝑀) + 1) = ((𝑗 + 1) − 𝑀))
108107oveq1d 5937 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑀) → (((𝑗𝑀) + 1) + 1) = (((𝑗 + 1) − 𝑀) + 1))
109108oveq1d 5937 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
11078, 109syl 14 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((((𝑗𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
11197, 110eqtrd 2229 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))
112111ex 115 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑋𝐵) ∧ 𝑗 ∈ (ℤ𝑀)) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))
113112expcom 116 . . . 4 (𝑗 ∈ (ℤ𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
114113a2d 26 . . 3 (𝑗 ∈ (ℤ𝑀) → (((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗𝑀) + 1) · 𝑋)) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))))
11510, 18, 26, 34, 69, 114uzind4 9662 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋)))
1161, 2, 115sylc 62 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ (ℤ𝑀) ∧ 𝑋𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁𝑀) + 1) · 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  cmpt 4094  cres 4665  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  0cc0 7879  1c1 7880   + caddc 7882  cmin 8197  -cneg 8198  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  Basecbs 12678  +gcplusg 12755   Σg cgsu 12928  Mndcmnd 13057  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-igsum 12930  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  gsumfzconstf  13472  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator