| Step | Hyp | Ref
 | Expression | 
| 1 |   | simp2 1000 | 
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 2 |   | 3simpb 997 | 
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵)) | 
| 3 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) | 
| 4 | 3 | mpteq1d 4118 | 
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) | 
| 5 | 4 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 𝑀 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))) | 
| 6 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑤 − 𝑀) = (𝑀 − 𝑀)) | 
| 7 | 6 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑤 = 𝑀 → ((𝑤 − 𝑀) + 1) = ((𝑀 − 𝑀) + 1)) | 
| 8 | 7 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 𝑀 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑀 − 𝑀) + 1) · 𝑋)) | 
| 9 | 5, 8 | eqeq12d 2211 | 
. . . 4
⊢ (𝑤 = 𝑀 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋))) | 
| 10 | 9 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑀 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋)))) | 
| 11 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗)) | 
| 12 | 11 | mpteq1d 4118 | 
. . . . . 6
⊢ (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) | 
| 13 | 12 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 𝑗 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))) | 
| 14 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑤 − 𝑀) = (𝑗 − 𝑀)) | 
| 15 | 14 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑤 = 𝑗 → ((𝑤 − 𝑀) + 1) = ((𝑗 − 𝑀) + 1)) | 
| 16 | 15 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 𝑗 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑗 − 𝑀) + 1) · 𝑋)) | 
| 17 | 13, 16 | eqeq12d 2211 | 
. . . 4
⊢ (𝑤 = 𝑗 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋))) | 
| 18 | 17 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑗 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)))) | 
| 19 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1))) | 
| 20 | 19 | mpteq1d 4118 | 
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) | 
| 21 | 20 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋))) | 
| 22 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑤 − 𝑀) = ((𝑗 + 1) − 𝑀)) | 
| 23 | 22 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → ((𝑤 − 𝑀) + 1) = (((𝑗 + 1) − 𝑀) + 1)) | 
| 24 | 23 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (((𝑤 − 𝑀) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) | 
| 25 | 21, 24 | eqeq12d 2211 | 
. . . 4
⊢ (𝑤 = (𝑗 + 1) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))) | 
| 26 | 25 | imbi2d 230 | 
. . 3
⊢ (𝑤 = (𝑗 + 1) → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) | 
| 27 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) | 
| 28 | 27 | mpteq1d 4118 | 
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) | 
| 29 | 28 | oveq2d 5938 | 
. . . . 5
⊢ (𝑤 = 𝑁 → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋))) | 
| 30 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑤 − 𝑀) = (𝑁 − 𝑀)) | 
| 31 | 30 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑤 = 𝑁 → ((𝑤 − 𝑀) + 1) = ((𝑁 − 𝑀) + 1)) | 
| 32 | 31 | oveq1d 5937 | 
. . . . 5
⊢ (𝑤 = 𝑁 → (((𝑤 − 𝑀) + 1) · 𝑋) = (((𝑁 − 𝑀) + 1) · 𝑋)) | 
| 33 | 29, 32 | eqeq12d 2211 | 
. . . 4
⊢ (𝑤 = 𝑁 → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋) ↔ (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋))) | 
| 34 | 33 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑁 → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝑋)) = (((𝑤 − 𝑀) + 1) · 𝑋)) ↔ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)))) | 
| 35 |   | simplr 528 | 
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑋 ∈ 𝐵) | 
| 36 |   | gsumconst.b | 
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) | 
| 37 |   | gsumconst.m | 
. . . . . . 7
⊢  · =
(.g‘𝐺) | 
| 38 | 36, 37 | mulg1 13259 | 
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) | 
| 39 | 35, 38 | syl 14 | 
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (1 · 𝑋) = 𝑋) | 
| 40 |   | zcn 9331 | 
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) | 
| 41 | 40 | subidd 8325 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀 − 𝑀) = 0) | 
| 42 | 41 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → ((𝑀 − 𝑀) + 1) = (0 + 1)) | 
| 43 |   | 0p1e1 9104 | 
. . . . . . . 8
⊢ (0 + 1) =
1 | 
| 44 | 42, 43 | eqtrdi 2245 | 
. . . . . . 7
⊢ (𝑀 ∈ ℤ → ((𝑀 − 𝑀) + 1) = 1) | 
| 45 | 44 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑀 ∈ ℤ → (((𝑀 − 𝑀) + 1) · 𝑋) = (1 · 𝑋)) | 
| 46 | 45 | adantl 277 | 
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (((𝑀 − 𝑀) + 1) · 𝑋) = (1 · 𝑋)) | 
| 47 |   | eqid 2196 | 
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 48 |   | simpll 527 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝐺 ∈ Mnd) | 
| 49 |   | uzid 9615 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 50 | 49 | adantl 277 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (ℤ≥‘𝑀)) | 
| 51 |   | simpllr 534 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑀)) → 𝑋 ∈ 𝐵) | 
| 52 | 51 | fmpttd 5717 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋):(𝑀...𝑀)⟶𝐵) | 
| 53 | 36, 47, 48, 50, 52 | gsumval2 13040 | 
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀)) | 
| 54 |   | simpr 110 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | 
| 55 | 54, 54 | fzfigd 10523 | 
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) ∈ Fin) | 
| 56 | 55 | mptexd 5789 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V) | 
| 57 |   | plusgslid 12790 | 
. . . . . . . . 9
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 58 | 57 | slotex 12705 | 
. . . . . . . 8
⊢ (𝐺 ∈ Mnd →
(+g‘𝐺)
∈ V) | 
| 59 | 48, 58 | syl 14 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) →
(+g‘𝐺)
∈ V) | 
| 60 |   | seq1g 10555 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) ∈ V ∧ (+g‘𝐺) ∈ V) → (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀)) | 
| 61 | 54, 56, 59, 60 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (seq𝑀((+g‘𝐺), (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋))‘𝑀) = ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀)) | 
| 62 |   | eqid 2196 | 
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋) | 
| 63 |   | eqidd 2197 | 
. . . . . . 7
⊢ (𝑘 = 𝑀 → 𝑋 = 𝑋) | 
| 64 |   | elfz3 10109 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | 
| 65 | 64 | adantl 277 | 
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ (𝑀...𝑀)) | 
| 66 | 62, 63, 65, 35 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)‘𝑀) = 𝑋) | 
| 67 | 53, 61, 66 | 3eqtrd 2233 | 
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = 𝑋) | 
| 68 | 39, 46, 67 | 3eqtr4rd 2240 | 
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑀 ∈ ℤ) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋)) | 
| 69 | 68 | expcom 116 | 
. . 3
⊢ (𝑀 ∈ ℤ → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝑋)) = (((𝑀 − 𝑀) + 1) · 𝑋))) | 
| 70 |   | fzssp1 10142 | 
. . . . . . . . . . . . 13
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) | 
| 71 | 70 | a1i 9 | 
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))) | 
| 72 | 71 | resmptd 4997 | 
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) | 
| 73 | 72 | oveq2d 5938 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋))) | 
| 74 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) | 
| 75 | 73, 74 | eqtrd 2229 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗))) = (((𝑗 − 𝑀) + 1) · 𝑋)) | 
| 76 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) | 
| 77 |   | eqidd 2197 | 
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → 𝑋 = 𝑋) | 
| 78 |   | simplr 528 | 
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 79 |   | peano2uz 9657 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) | 
| 80 |   | eluzfz2 10107 | 
. . . . . . . . . . 11
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) | 
| 81 | 78, 79, 80 | 3syl 17 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) | 
| 82 |   | simpllr 534 | 
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑋 ∈ 𝐵) | 
| 83 | 76, 77, 81, 82 | fvmptd3 5655 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)) = 𝑋) | 
| 84 | 75, 83 | oveq12d 5940 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g‘𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1))) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) | 
| 85 |   | simplll 533 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝐺 ∈ Mnd) | 
| 86 |   | eluzel2 9606 | 
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 87 | 78, 86 | syl 14 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → 𝑀 ∈ ℤ) | 
| 88 |   | simpllr 534 | 
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑋 ∈ 𝐵) | 
| 89 | 88 | fmpttd 5717 | 
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵) | 
| 90 | 89 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋):(𝑀...(𝑗 + 1))⟶𝐵) | 
| 91 | 36, 47, 85, 87, 78, 90 | gsumsplit1r 13041 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋) ↾ (𝑀...𝑗)))(+g‘𝐺)((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)‘(𝑗 + 1)))) | 
| 92 |   | uznn0sub 9633 | 
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 − 𝑀) ∈
ℕ0) | 
| 93 |   | nn0p1nn 9288 | 
. . . . . . . . . 10
⊢ ((𝑗 − 𝑀) ∈ ℕ0 → ((𝑗 − 𝑀) + 1) ∈ ℕ) | 
| 94 | 78, 92, 93 | 3syl 17 | 
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝑗 − 𝑀) + 1) ∈ ℕ) | 
| 95 | 36, 37, 47 | mulgnnp1 13260 | 
. . . . . . . . 9
⊢ ((((𝑗 − 𝑀) + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) | 
| 96 | 94, 82, 95 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 − 𝑀) + 1) · 𝑋)(+g‘𝐺)𝑋)) | 
| 97 | 84, 91, 96 | 3eqtr4d 2239 | 
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 − 𝑀) + 1) + 1) · 𝑋)) | 
| 98 |   | eluzelcn 9612 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℂ) | 
| 99 | 86 | zcnd 9449 | 
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℂ) | 
| 100 | 99 | negcld 8324 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → -𝑀 ∈ ℂ) | 
| 101 |   | 1cnd 8042 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 1 ∈ ℂ) | 
| 102 | 98, 100, 101 | add32d 8194 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 + 1) + -𝑀)) | 
| 103 | 98, 99 | negsubd 8343 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + -𝑀) = (𝑗 − 𝑀)) | 
| 104 | 103 | oveq1d 5937 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + -𝑀) + 1) = ((𝑗 − 𝑀) + 1)) | 
| 105 | 98, 101 | addcld 8046 | 
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ ℂ) | 
| 106 | 105, 99 | negsubd 8343 | 
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 + 1) + -𝑀) = ((𝑗 + 1) − 𝑀)) | 
| 107 | 102, 104,
106 | 3eqtr3d 2237 | 
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝑗 − 𝑀) + 1) = ((𝑗 + 1) − 𝑀)) | 
| 108 | 107 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (((𝑗 − 𝑀) + 1) + 1) = (((𝑗 + 1) − 𝑀) + 1)) | 
| 109 | 108 | oveq1d 5937 | 
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) | 
| 110 | 78, 109 | syl 14 | 
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((((𝑗 − 𝑀) + 1) + 1) · 𝑋) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) | 
| 111 | 97, 110 | eqtrd 2229 | 
. . . . . 6
⊢ ((((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) ∧ (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)) | 
| 112 | 111 | ex 115 | 
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋))) | 
| 113 | 112 | expcom 116 | 
. . . 4
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) | 
| 114 | 113 | a2d 26 | 
. . 3
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝑋)) = (((𝑗 − 𝑀) + 1) · 𝑋)) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝑋)) = ((((𝑗 + 1) − 𝑀) + 1) · 𝑋)))) | 
| 115 | 10, 18, 26, 34, 69, 114 | uzind4 9662 | 
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋))) | 
| 116 | 1, 2, 115 | sylc 62 | 
1
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝑋)) = (((𝑁 − 𝑀) + 1) · 𝑋)) |