ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm GIF version

Theorem gsumfzfsumlemm 14516
Description: Lemma for gsumfzfsum 14517. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumfzfsumlemm.b ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfzfsumlemm (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfzfsumlemm
Dummy variables 𝑗 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10196 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 5982 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54mpteq1d 4148 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))
65oveq2d 5990 . . . . 5 (𝑤 = 𝑀 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)))
74sumeq1d 11843 . . . . 5 (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
86, 7eqeq12d 2224 . . . 4 (𝑤 = 𝑀 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
98imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)))
10 oveq2 5982 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1110mpteq1d 4148 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
1211oveq2d 5990 . . . . 5 (𝑤 = 𝑗 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
1310sumeq1d 11843 . . . . 5 (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
1412, 13eqeq12d 2224 . . . 4 (𝑤 = 𝑗 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))
1514imbi2d 230 . . 3 (𝑤 = 𝑗 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)))
16 oveq2 5982 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
1716mpteq1d 4148 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))
1817oveq2d 5990 . . . . 5 (𝑤 = (𝑗 + 1) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)))
1916sumeq1d 11843 . . . . 5 (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
2018, 19eqeq12d 2224 . . . 4 (𝑤 = (𝑗 + 1) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
2120imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
22 oveq2 5982 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2322mpteq1d 4148 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))
2423oveq2d 5990 . . . . 5 (𝑤 = 𝑁 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)))
2522sumeq1d 11843 . . . . 5 (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2624, 25eqeq12d 2224 . . . 4 (𝑤 = 𝑁 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
2726imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)))
28 cnfldbas 14489 . . . . . 6 ℂ = (Base‘ℂfld)
29 cnring 14499 . . . . . . 7 fld ∈ Ring
30 ringmnd 13935 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 30mp1i 10 . . . . . 6 (𝜑 → ℂfld ∈ Mnd)
32 eluzel2 9695 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
331, 32syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 eluzfz1 10195 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
351, 34syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
36 gsumfzfsumlemm.b . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
3736ralrimiva 2583 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ)
38 nfcsb1v 3137 . . . . . . . . 9 𝑘𝑀 / 𝑘𝐵
3938nfel1 2363 . . . . . . . 8 𝑘𝑀 / 𝑘𝐵 ∈ ℂ
40 csbeq1a 3113 . . . . . . . . 9 (𝑘 = 𝑀𝐵 = 𝑀 / 𝑘𝐵)
4140eleq1d 2278 . . . . . . . 8 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝑀 / 𝑘𝐵 ∈ ℂ))
4239, 41rspc 2881 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → 𝑀 / 𝑘𝐵 ∈ ℂ))
4335, 37, 42sylc 62 . . . . . 6 (𝜑𝑀 / 𝑘𝐵 ∈ ℂ)
4440adantl 277 . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐵 = 𝑀 / 𝑘𝐵)
45 nfv 1554 . . . . . 6 𝑘𝜑
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13848 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = 𝑀 / 𝑘𝐵)
47 fzsn 10230 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
4833, 47syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
4948mpteq1d 4148 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵))
5049oveq2d 5990 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)))
5147sumeq1d 11843 . . . . . . 7 (𝑀 ∈ ℤ → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
5233, 51syl 14 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
53 sumsns 11892 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5433, 43, 53syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5552, 54eqtrd 2242 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = 𝑀 / 𝑘𝐵)
5646, 50, 553eqtr4d 2252 . . . 4 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
58 simpr 110 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
5958oveq1d 5989 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
60 mpocnfldadd 14490 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
6129a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Ring)
6233adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
63 elfzouz 10315 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
6463adantl 277 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ𝑀))
65 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑)
6665, 33syl 14 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ)
67 elfzoel2 10310 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ)
69 elfzelz 10189 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ)
7069adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ)
71 elfzle1 10191 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀𝑘)
7271adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀𝑘)
7370zred 9537 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ)
74 elfzoelz 10311 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
7574ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ)
7675peano2zd 9540 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ)
7776zred 9537 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
7868zred 9537 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ)
79 elfzle2 10192 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
8079adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
81 fzofzp1 10400 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
8281ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁))
83 elfzle2 10192 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁)
8482, 83syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁)
8573, 77, 78, 80, 84letrd 8238 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘𝑁)
8666, 68, 70, 72, 85elfzd 10180 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁))
8765, 86, 36syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ)
8887fmpttd 5763 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ)
8928, 60, 61, 62, 64, 88gsumsplit1r 13397 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))))
90 fzssp1 10231 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
91 resmpt 5029 . . . . . . . . . . . 12 ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9290, 91mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9392oveq2d 5990 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
94 peano2uz 9746 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
9563, 94syl 14 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
97 eluzfz2 10196 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
99 rspcsbela 3164 . . . . . . . . . . . 12 (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
10081, 37, 99syl2anr 290 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
101 eqid 2209 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)
102101fvmpts 5685 . . . . . . . . . . 11 (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10398, 100, 102syl2anc 411 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10493, 103oveq12d 5992 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵))
105 cnfld0 14500 . . . . . . . . . . 11 0 = (0g‘ℂfld)
10629, 30mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Mnd)
10774adantl 277 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
108 fzelp1 10238 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1)))
109108, 87sylan2 286 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ)
110109fmpttd 5763 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ)
11128, 105, 106, 62, 107, 110gsumfzcl 13498 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ)
112111, 100addcld 8134 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ)
113 oveq1 5981 . . . . . . . . . . 11 (𝑥 = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦))
114 oveq2 5982 . . . . . . . . . . 11 (𝑦 = (𝑗 + 1) / 𝑘𝐵 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
115 eqid 2209 . . . . . . . . . . 11 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
116113, 114, 115ovmpog 6110 . . . . . . . . . 10 (((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ ∧ ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
117111, 100, 112, 116syl3anc 1252 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
11889, 104, 1173eqtrd 2246 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
119118adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
120 fzsuc 10233 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
12164, 120syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
122121sumeq1d 11843 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵)
123 nfv 1554 . . . . . . . . . 10 𝑘(𝜑𝑗 ∈ (𝑀..^𝑁))
124 nfcsb1v 3137 . . . . . . . . . 10 𝑘(𝑗 + 1) / 𝑘𝐵
12562, 107fzfigd 10620 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin)
126107peano2zd 9540 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
127 fzp1nel 10268 . . . . . . . . . . 11 ¬ (𝑗 + 1) ∈ (𝑀...𝑗)
128127a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗))
129 csbeq1a 3113 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑘𝐵)
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11887 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
131122, 130eqtrd 2242 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
132131adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
13359, 119, 1323eqtr4d 2252 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
134133ex 115 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
135134expcom 116 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
136135a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
1379, 15, 21, 27, 57, 136fzind2 10412 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
1383, 137mpcom 36 1 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  csb 3104  cun 3175  wss 3177  {csn 3646   class class class wbr 4062  cmpt 4124  cres 4698  cfv 5294  (class class class)co 5974  cmpo 5976  cc 7965  0cc0 7967  1c1 7968   + caddc 7970  cle 8150  cz 9414  cuz 9690  ...cfz 10172  ..^cfzo 10306  Σcsu 11830   Σg cgsu 13256  Mndcmnd 13415  Ringcrg 13925  fldccnfld 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-igsum 13258  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623  df-cmn 13789  df-mgp 13850  df-ring 13927  df-cring 13928  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486
This theorem is referenced by:  gsumfzfsum  14517
  Copyright terms: Public domain W3C validator