ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm GIF version

Theorem gsumfzfsumlemm 14143
Description: Lemma for gsumfzfsum 14144. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumfzfsumlemm.b ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfzfsumlemm (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfzfsumlemm
Dummy variables 𝑗 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10107 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 5930 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54mpteq1d 4118 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))
65oveq2d 5938 . . . . 5 (𝑤 = 𝑀 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)))
74sumeq1d 11531 . . . . 5 (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
86, 7eqeq12d 2211 . . . 4 (𝑤 = 𝑀 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
98imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)))
10 oveq2 5930 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1110mpteq1d 4118 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
1211oveq2d 5938 . . . . 5 (𝑤 = 𝑗 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
1310sumeq1d 11531 . . . . 5 (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
1412, 13eqeq12d 2211 . . . 4 (𝑤 = 𝑗 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))
1514imbi2d 230 . . 3 (𝑤 = 𝑗 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)))
16 oveq2 5930 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
1716mpteq1d 4118 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))
1817oveq2d 5938 . . . . 5 (𝑤 = (𝑗 + 1) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)))
1916sumeq1d 11531 . . . . 5 (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
2018, 19eqeq12d 2211 . . . 4 (𝑤 = (𝑗 + 1) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
2120imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
22 oveq2 5930 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2322mpteq1d 4118 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))
2423oveq2d 5938 . . . . 5 (𝑤 = 𝑁 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)))
2522sumeq1d 11531 . . . . 5 (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2624, 25eqeq12d 2211 . . . 4 (𝑤 = 𝑁 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
2726imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)))
28 cnfldbas 14116 . . . . . 6 ℂ = (Base‘ℂfld)
29 cnring 14126 . . . . . . 7 fld ∈ Ring
30 ringmnd 13562 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 30mp1i 10 . . . . . 6 (𝜑 → ℂfld ∈ Mnd)
32 eluzel2 9606 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
331, 32syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 eluzfz1 10106 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
351, 34syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
36 gsumfzfsumlemm.b . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
3736ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ)
38 nfcsb1v 3117 . . . . . . . . 9 𝑘𝑀 / 𝑘𝐵
3938nfel1 2350 . . . . . . . 8 𝑘𝑀 / 𝑘𝐵 ∈ ℂ
40 csbeq1a 3093 . . . . . . . . 9 (𝑘 = 𝑀𝐵 = 𝑀 / 𝑘𝐵)
4140eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝑀 / 𝑘𝐵 ∈ ℂ))
4239, 41rspc 2862 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → 𝑀 / 𝑘𝐵 ∈ ℂ))
4335, 37, 42sylc 62 . . . . . 6 (𝜑𝑀 / 𝑘𝐵 ∈ ℂ)
4440adantl 277 . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐵 = 𝑀 / 𝑘𝐵)
45 nfv 1542 . . . . . 6 𝑘𝜑
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13475 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = 𝑀 / 𝑘𝐵)
47 fzsn 10141 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
4833, 47syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
4948mpteq1d 4118 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵))
5049oveq2d 5938 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)))
5147sumeq1d 11531 . . . . . . 7 (𝑀 ∈ ℤ → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
5233, 51syl 14 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
53 sumsns 11580 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5433, 43, 53syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5552, 54eqtrd 2229 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = 𝑀 / 𝑘𝐵)
5646, 50, 553eqtr4d 2239 . . . 4 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
58 simpr 110 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
5958oveq1d 5937 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
60 mpocnfldadd 14117 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
6129a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Ring)
6233adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
63 elfzouz 10226 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
6463adantl 277 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ𝑀))
65 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑)
6665, 33syl 14 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ)
67 elfzoel2 10221 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ)
69 elfzelz 10100 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ)
7069adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ)
71 elfzle1 10102 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀𝑘)
7271adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀𝑘)
7370zred 9448 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ)
74 elfzoelz 10222 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
7574ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ)
7675peano2zd 9451 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ)
7776zred 9448 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
7868zred 9448 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ)
79 elfzle2 10103 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
8079adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
81 fzofzp1 10303 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
8281ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁))
83 elfzle2 10103 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁)
8482, 83syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁)
8573, 77, 78, 80, 84letrd 8150 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘𝑁)
8666, 68, 70, 72, 85elfzd 10091 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁))
8765, 86, 36syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ)
8887fmpttd 5717 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ)
8928, 60, 61, 62, 64, 88gsumsplit1r 13041 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))))
90 fzssp1 10142 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
91 resmpt 4994 . . . . . . . . . . . 12 ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9290, 91mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9392oveq2d 5938 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
94 peano2uz 9657 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
9563, 94syl 14 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
97 eluzfz2 10107 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
99 rspcsbela 3144 . . . . . . . . . . . 12 (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
10081, 37, 99syl2anr 290 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
101 eqid 2196 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)
102101fvmpts 5639 . . . . . . . . . . 11 (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10398, 100, 102syl2anc 411 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10493, 103oveq12d 5940 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵))
105 cnfld0 14127 . . . . . . . . . . 11 0 = (0g‘ℂfld)
10629, 30mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Mnd)
10774adantl 277 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
108 fzelp1 10149 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1)))
109108, 87sylan2 286 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ)
110109fmpttd 5717 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ)
11128, 105, 106, 62, 107, 110gsumfzcl 13131 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ)
112111, 100addcld 8046 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ)
113 oveq1 5929 . . . . . . . . . . 11 (𝑥 = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦))
114 oveq2 5930 . . . . . . . . . . 11 (𝑦 = (𝑗 + 1) / 𝑘𝐵 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
115 eqid 2196 . . . . . . . . . . 11 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
116113, 114, 115ovmpog 6057 . . . . . . . . . 10 (((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ ∧ ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
117111, 100, 112, 116syl3anc 1249 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
11889, 104, 1173eqtrd 2233 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
119118adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
120 fzsuc 10144 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
12164, 120syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
122121sumeq1d 11531 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵)
123 nfv 1542 . . . . . . . . . 10 𝑘(𝜑𝑗 ∈ (𝑀..^𝑁))
124 nfcsb1v 3117 . . . . . . . . . 10 𝑘(𝑗 + 1) / 𝑘𝐵
12562, 107fzfigd 10523 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin)
126107peano2zd 9451 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
127 fzp1nel 10179 . . . . . . . . . . 11 ¬ (𝑗 + 1) ∈ (𝑀...𝑗)
128127a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗))
129 csbeq1a 3093 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑘𝐵)
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11575 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
131122, 130eqtrd 2229 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
132131adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
13359, 119, 1323eqtr4d 2239 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
134133ex 115 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
135134expcom 116 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
136135a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
1379, 15, 21, 27, 57, 136fzind2 10315 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
1383, 137mpcom 36 1 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  csb 3084  cun 3155  wss 3157  {csn 3622   class class class wbr 4033  cmpt 4094  cres 4665  cfv 5258  (class class class)co 5922  cmpo 5924  cc 7877  0cc0 7879  1c1 7880   + caddc 7882  cle 8062  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217  Σcsu 11518   Σg cgsu 12928  Mndcmnd 13057  Ringcrg 13552  fldccnfld 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-igsum 12930  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-cmn 13416  df-mgp 13477  df-ring 13554  df-cring 13555  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113
This theorem is referenced by:  gsumfzfsum  14144
  Copyright terms: Public domain W3C validator