ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm GIF version

Theorem gsumfzfsumlemm 14559
Description: Lemma for gsumfzfsum 14560. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumfzfsumlemm.b ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfzfsumlemm (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfzfsumlemm
Dummy variables 𝑗 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10236 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 6015 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54mpteq1d 4169 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))
65oveq2d 6023 . . . . 5 (𝑤 = 𝑀 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)))
74sumeq1d 11885 . . . . 5 (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
86, 7eqeq12d 2244 . . . 4 (𝑤 = 𝑀 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
98imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)))
10 oveq2 6015 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1110mpteq1d 4169 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
1211oveq2d 6023 . . . . 5 (𝑤 = 𝑗 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
1310sumeq1d 11885 . . . . 5 (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
1412, 13eqeq12d 2244 . . . 4 (𝑤 = 𝑗 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))
1514imbi2d 230 . . 3 (𝑤 = 𝑗 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)))
16 oveq2 6015 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
1716mpteq1d 4169 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))
1817oveq2d 6023 . . . . 5 (𝑤 = (𝑗 + 1) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)))
1916sumeq1d 11885 . . . . 5 (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
2018, 19eqeq12d 2244 . . . 4 (𝑤 = (𝑗 + 1) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
2120imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
22 oveq2 6015 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2322mpteq1d 4169 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))
2423oveq2d 6023 . . . . 5 (𝑤 = 𝑁 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)))
2522sumeq1d 11885 . . . . 5 (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2624, 25eqeq12d 2244 . . . 4 (𝑤 = 𝑁 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
2726imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)))
28 cnfldbas 14532 . . . . . 6 ℂ = (Base‘ℂfld)
29 cnring 14542 . . . . . . 7 fld ∈ Ring
30 ringmnd 13977 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 30mp1i 10 . . . . . 6 (𝜑 → ℂfld ∈ Mnd)
32 eluzel2 9735 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
331, 32syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 eluzfz1 10235 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
351, 34syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
36 gsumfzfsumlemm.b . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
3736ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ)
38 nfcsb1v 3157 . . . . . . . . 9 𝑘𝑀 / 𝑘𝐵
3938nfel1 2383 . . . . . . . 8 𝑘𝑀 / 𝑘𝐵 ∈ ℂ
40 csbeq1a 3133 . . . . . . . . 9 (𝑘 = 𝑀𝐵 = 𝑀 / 𝑘𝐵)
4140eleq1d 2298 . . . . . . . 8 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝑀 / 𝑘𝐵 ∈ ℂ))
4239, 41rspc 2901 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → 𝑀 / 𝑘𝐵 ∈ ℂ))
4335, 37, 42sylc 62 . . . . . 6 (𝜑𝑀 / 𝑘𝐵 ∈ ℂ)
4440adantl 277 . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐵 = 𝑀 / 𝑘𝐵)
45 nfv 1574 . . . . . 6 𝑘𝜑
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13890 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = 𝑀 / 𝑘𝐵)
47 fzsn 10270 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
4833, 47syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
4948mpteq1d 4169 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵))
5049oveq2d 6023 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)))
5147sumeq1d 11885 . . . . . . 7 (𝑀 ∈ ℤ → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
5233, 51syl 14 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
53 sumsns 11934 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5433, 43, 53syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5552, 54eqtrd 2262 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = 𝑀 / 𝑘𝐵)
5646, 50, 553eqtr4d 2272 . . . 4 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
58 simpr 110 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
5958oveq1d 6022 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
60 mpocnfldadd 14533 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
6129a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Ring)
6233adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
63 elfzouz 10355 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
6463adantl 277 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ𝑀))
65 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑)
6665, 33syl 14 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ)
67 elfzoel2 10350 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ)
69 elfzelz 10229 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ)
7069adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ)
71 elfzle1 10231 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀𝑘)
7271adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀𝑘)
7370zred 9577 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ)
74 elfzoelz 10351 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
7574ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ)
7675peano2zd 9580 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ)
7776zred 9577 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
7868zred 9577 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ)
79 elfzle2 10232 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
8079adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
81 fzofzp1 10441 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
8281ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁))
83 elfzle2 10232 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁)
8482, 83syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁)
8573, 77, 78, 80, 84letrd 8278 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘𝑁)
8666, 68, 70, 72, 85elfzd 10220 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁))
8765, 86, 36syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ)
8887fmpttd 5792 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ)
8928, 60, 61, 62, 64, 88gsumsplit1r 13439 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))))
90 fzssp1 10271 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
91 resmpt 5053 . . . . . . . . . . . 12 ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9290, 91mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9392oveq2d 6023 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
94 peano2uz 9786 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
9563, 94syl 14 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
97 eluzfz2 10236 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
99 rspcsbela 3184 . . . . . . . . . . . 12 (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
10081, 37, 99syl2anr 290 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
101 eqid 2229 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)
102101fvmpts 5714 . . . . . . . . . . 11 (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10398, 100, 102syl2anc 411 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10493, 103oveq12d 6025 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵))
105 cnfld0 14543 . . . . . . . . . . 11 0 = (0g‘ℂfld)
10629, 30mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Mnd)
10774adantl 277 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
108 fzelp1 10278 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1)))
109108, 87sylan2 286 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ)
110109fmpttd 5792 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ)
11128, 105, 106, 62, 107, 110gsumfzcl 13540 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ)
112111, 100addcld 8174 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ)
113 oveq1 6014 . . . . . . . . . . 11 (𝑥 = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦))
114 oveq2 6015 . . . . . . . . . . 11 (𝑦 = (𝑗 + 1) / 𝑘𝐵 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
115 eqid 2229 . . . . . . . . . . 11 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
116113, 114, 115ovmpog 6145 . . . . . . . . . 10 (((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ ∧ ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
117111, 100, 112, 116syl3anc 1271 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
11889, 104, 1173eqtrd 2266 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
119118adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
120 fzsuc 10273 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
12164, 120syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
122121sumeq1d 11885 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵)
123 nfv 1574 . . . . . . . . . 10 𝑘(𝜑𝑗 ∈ (𝑀..^𝑁))
124 nfcsb1v 3157 . . . . . . . . . 10 𝑘(𝑗 + 1) / 𝑘𝐵
12562, 107fzfigd 10661 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin)
126107peano2zd 9580 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
127 fzp1nel 10308 . . . . . . . . . . 11 ¬ (𝑗 + 1) ∈ (𝑀...𝑗)
128127a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗))
129 csbeq1a 3133 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑘𝐵)
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11929 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
131122, 130eqtrd 2262 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
132131adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
13359, 119, 1323eqtr4d 2272 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
134133ex 115 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
135134expcom 116 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
136135a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
1379, 15, 21, 27, 57, 136fzind2 10453 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
1383, 137mpcom 36 1 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  csb 3124  cun 3195  wss 3197  {csn 3666   class class class wbr 4083  cmpt 4145  cres 4721  cfv 5318  (class class class)co 6007  cmpo 6009  cc 8005  0cc0 8007  1c1 8008   + caddc 8010  cle 8190  cz 9454  cuz 9730  ...cfz 10212  ..^cfzo 10346  Σcsu 11872   Σg cgsu 13298  Mndcmnd 13457  Ringcrg 13967  fldccnfld 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-igsum 13300  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mulg 13665  df-cmn 13831  df-mgp 13892  df-ring 13969  df-cring 13970  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529
This theorem is referenced by:  gsumfzfsum  14560
  Copyright terms: Public domain W3C validator