Step | Hyp | Ref
| Expression |
1 | | gsumfzfsumlemm.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 10098 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) |
5 | 4 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) |
6 | 5 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑀 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))) |
7 | 4 | sumeq1d 11509 |
. . . . 5
⊢ (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
8 | 6, 7 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑀 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)) |
9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))) |
10 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗)) |
11 | 10 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
12 | 11 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑗 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))) |
13 | 10 | sumeq1d 11509 |
. . . . 5
⊢ (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵) |
14 | 12, 13 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑗 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)) |
15 | 14 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑗 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))) |
16 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1))) |
17 | 16 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) |
18 | 17 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))) |
19 | 16 | sumeq1d 11509 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵) |
20 | 18, 19 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = (𝑗 + 1) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)) |
21 | 20 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
22 | | oveq2 5926 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) |
23 | 22 | mpteq1d 4114 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) |
24 | 23 | oveq2d 5934 |
. . . . 5
⊢ (𝑤 = 𝑁 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))) |
25 | 22 | sumeq1d 11509 |
. . . . 5
⊢ (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
26 | 24, 25 | eqeq12d 2208 |
. . . 4
⊢ (𝑤 = 𝑁 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)) |
27 | 26 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))) |
28 | | cnfldbas 14051 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
29 | | cnring 14058 |
. . . . . . 7
⊢
ℂfld ∈ Ring |
30 | | ringmnd 13502 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
31 | 29, 30 | mp1i 10 |
. . . . . 6
⊢ (𝜑 → ℂfld
∈ Mnd) |
32 | | eluzel2 9597 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
33 | 1, 32 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
34 | | eluzfz1 10097 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
35 | 1, 34 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
36 | | gsumfzfsumlemm.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
37 | 36 | ralrimiva 2567 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) |
38 | | nfcsb1v 3113 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐵 |
39 | 38 | nfel1 2347 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ |
40 | | csbeq1a 3089 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → 𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
41 | 40 | eleq1d 2262 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ)) |
42 | 39, 41 | rspc 2858 |
. . . . . . 7
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ)) |
43 | 35, 37, 42 | sylc 62 |
. . . . . 6
⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ) |
44 | 40 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
45 | | nfv 1539 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
46 | 28, 31, 33, 43, 44, 45, 38 | gsumfzsnfd 13415 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = ⦋𝑀 / 𝑘⦌𝐵) |
47 | | fzsn 10132 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
48 | 33, 47 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
49 | 48 | mpteq1d 4114 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵)) |
50 | 49 | oveq2d 5934 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ {𝑀} ↦ 𝐵))) |
51 | 47 | sumeq1d 11509 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵) |
52 | 33, 51 | syl 14 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵) |
53 | | sumsns 11558 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧
⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
54 | 33, 43, 53 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
55 | 52, 54 | eqtrd 2226 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
56 | 46, 50, 55 | 3eqtr4d 2236 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
57 | 56 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)) |
58 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) |
59 | 58 | oveq1d 5933 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
60 | | mpocnfldadd 14053 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) =
(+g‘ℂfld) |
61 | 29 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈
Ring) |
62 | 33 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ) |
63 | | elfzouz 10217 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) |
64 | 63 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
65 | | simpll 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑) |
66 | 65, 33 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ) |
67 | | elfzoel2 10212 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) |
68 | 67 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ) |
69 | | elfzelz 10091 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ) |
70 | 69 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ) |
71 | | elfzle1 10093 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀 ≤ 𝑘) |
72 | 71 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ≤ 𝑘) |
73 | 70 | zred 9439 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ) |
74 | | elfzoelz 10213 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ) |
75 | 74 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ) |
76 | 75 | peano2zd 9442 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ) |
77 | 76 | zred 9439 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ) |
78 | 68 | zred 9439 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ) |
79 | | elfzle2 10094 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1)) |
80 | 79 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1)) |
81 | | fzofzp1 10294 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
82 | 81 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
83 | | elfzle2 10094 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁) |
84 | 82, 83 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁) |
85 | 73, 77, 78, 80, 84 | letrd 8143 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ 𝑁) |
86 | 66, 68, 70, 72, 85 | elfzd 10082 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁)) |
87 | 65, 86, 36 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ) |
88 | 87 | fmpttd 5713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ) |
89 | 28, 60, 61, 62, 64, 88 | gsumsplit1r 12981 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)))) |
90 | | fzssp1 10133 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) |
91 | | resmpt 4990 |
. . . . . . . . . . . 12
⊢ ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
92 | 90, 91 | mp1i 10 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
93 | 92 | oveq2d 5934 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))) |
94 | | peano2uz 9648 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
95 | 63, 94 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
96 | 95 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
97 | | eluzfz2 10098 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
98 | 96, 97 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
99 | | rspcsbela 3140 |
. . . . . . . . . . . 12
⊢ (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) →
⦋(𝑗 + 1) /
𝑘⦌𝐵 ∈
ℂ) |
100 | 81, 37, 99 | syl2anr 290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ⦋(𝑗 + 1) / 𝑘⦌𝐵 ∈ ℂ) |
101 | | eqid 2193 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) |
102 | 101 | fvmpts 5635 |
. . . . . . . . . . 11
⊢ (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ ⦋(𝑗 + 1) / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
103 | 98, 100, 102 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
104 | 93, 103 | oveq12d 5936 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
105 | | cnfld0 14059 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℂfld) |
106 | 29, 30 | mp1i 10 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈
Mnd) |
107 | 74 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ) |
108 | | fzelp1 10140 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1))) |
109 | 108, 87 | sylan2 286 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ) |
110 | 109 | fmpttd 5713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ) |
111 | 28, 105, 106, 62, 107, 110 | gsumfzcl 13071 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ) |
112 | 111, 100 | addcld 8039 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) ∈ ℂ) |
113 | | oveq1 5925 |
. . . . . . . . . . 11
⊢ (𝑥 = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦)) |
114 | | oveq2 5926 |
. . . . . . . . . . 11
⊢ (𝑦 = ⦋(𝑗 + 1) / 𝑘⦌𝐵 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
115 | | eqid 2193 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
116 | 113, 114,
115 | ovmpog 6053 |
. . . . . . . . . 10
⊢
(((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧
⦋(𝑗 + 1) /
𝑘⦌𝐵 ∈ ℂ ∧
((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) ∈ ℂ) →
((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
117 | 111, 100,
112, 116 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
118 | 89, 104, 117 | 3eqtrd 2230 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
119 | 118 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
120 | | fzsuc 10135 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)})) |
121 | 64, 120 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)})) |
122 | 121 | sumeq1d 11509 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵) |
123 | | nfv 1539 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) |
124 | | nfcsb1v 3113 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝑗 + 1) / 𝑘⦌𝐵 |
125 | 62, 107 | fzfigd 10502 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin) |
126 | 107 | peano2zd 9442 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ) |
127 | | fzp1nel 10170 |
. . . . . . . . . . 11
⊢ ¬
(𝑗 + 1) ∈ (𝑀...𝑗) |
128 | 127 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗)) |
129 | | csbeq1a 3089 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → 𝐵 = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
130 | 123, 124,
125, 126, 128, 109, 129, 100 | fsumsplitsn 11553 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
131 | 122, 130 | eqtrd 2226 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
132 | 131 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
133 | 59, 119, 132 | 3eqtr4d 2236 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵) |
134 | 133 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)) |
135 | 134 | expcom 116 |
. . . 4
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
136 | 135 | a2d 26 |
. . 3
⊢ (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
137 | 9, 15, 21, 27, 57, 136 | fzind2 10306 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)) |
138 | 3, 137 | mpcom 36 |
1
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |