| Step | Hyp | Ref
| Expression |
| 1 | | gsumfzfsumlemm.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | eluzfz2 10124 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 4 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀)) |
| 5 | 4 | mpteq1d 4119 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) |
| 6 | 5 | oveq2d 5941 |
. . . . 5
⊢ (𝑤 = 𝑀 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))) |
| 7 | 4 | sumeq1d 11548 |
. . . . 5
⊢ (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
| 8 | 6, 7 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑀 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)) |
| 9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))) |
| 10 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗)) |
| 11 | 10 | mpteq1d 4119 |
. . . . . 6
⊢ (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
| 12 | 11 | oveq2d 5941 |
. . . . 5
⊢ (𝑤 = 𝑗 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))) |
| 13 | 10 | sumeq1d 11548 |
. . . . 5
⊢ (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵) |
| 14 | 12, 13 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑗 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)) |
| 15 | 14 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑗 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))) |
| 16 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1))) |
| 17 | 16 | mpteq1d 4119 |
. . . . . 6
⊢ (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) |
| 18 | 17 | oveq2d 5941 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))) |
| 19 | 16 | sumeq1d 11548 |
. . . . 5
⊢ (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵) |
| 20 | 18, 19 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = (𝑗 + 1) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)) |
| 21 | 20 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
| 22 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁)) |
| 23 | 22 | mpteq1d 4119 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) |
| 24 | 23 | oveq2d 5941 |
. . . . 5
⊢ (𝑤 = 𝑁 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))) |
| 25 | 22 | sumeq1d 11548 |
. . . . 5
⊢ (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |
| 26 | 24, 25 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑁 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)) |
| 27 | 26 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))) |
| 28 | | cnfldbas 14192 |
. . . . . 6
⊢ ℂ =
(Base‘ℂfld) |
| 29 | | cnring 14202 |
. . . . . . 7
⊢
ℂfld ∈ Ring |
| 30 | | ringmnd 13638 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → ℂfld ∈
Mnd) |
| 31 | 29, 30 | mp1i 10 |
. . . . . 6
⊢ (𝜑 → ℂfld
∈ Mnd) |
| 32 | | eluzel2 9623 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 33 | 1, 32 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 34 | | eluzfz1 10123 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| 35 | 1, 34 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 36 | | gsumfzfsumlemm.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ) |
| 37 | 36 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) |
| 38 | | nfcsb1v 3117 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐵 |
| 39 | 38 | nfel1 2350 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ |
| 40 | | csbeq1a 3093 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → 𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
| 41 | 40 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ)) |
| 42 | 39, 41 | rspc 2862 |
. . . . . . 7
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ)) |
| 43 | 35, 37, 42 | sylc 62 |
. . . . . 6
⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ) |
| 44 | 40 | adantl 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
| 45 | | nfv 1542 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
| 46 | 28, 31, 33, 43, 44, 45, 38 | gsumfzsnfd 13551 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = ⦋𝑀 / 𝑘⦌𝐵) |
| 47 | | fzsn 10158 |
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
| 48 | 33, 47 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝑀) = {𝑀}) |
| 49 | 48 | mpteq1d 4119 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵)) |
| 50 | 49 | oveq2d 5941 |
. . . . 5
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld
Σg (𝑘 ∈ {𝑀} ↦ 𝐵))) |
| 51 | 47 | sumeq1d 11548 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ →
Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵) |
| 52 | 33, 51 | syl 14 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵) |
| 53 | | sumsns 11597 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧
⦋𝑀 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
| 54 | 33, 43, 53 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
| 55 | 52, 54 | eqtrd 2229 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = ⦋𝑀 / 𝑘⦌𝐵) |
| 56 | 46, 50, 55 | 3eqtr4d 2239 |
. . . 4
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵) |
| 57 | 56 | a1i 9 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)) |
| 58 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) |
| 59 | 58 | oveq1d 5940 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 60 | | mpocnfldadd 14193 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) =
(+g‘ℂfld) |
| 61 | 29 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈
Ring) |
| 62 | 33 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ) |
| 63 | | elfzouz 10243 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 64 | 63 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 65 | | simpll 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑) |
| 66 | 65, 33 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ) |
| 67 | | elfzoel2 10238 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ) |
| 68 | 67 | ad2antlr 489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ) |
| 69 | | elfzelz 10117 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ) |
| 70 | 69 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ) |
| 71 | | elfzle1 10119 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀 ≤ 𝑘) |
| 72 | 71 | adantl 277 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ≤ 𝑘) |
| 73 | 70 | zred 9465 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ) |
| 74 | | elfzoelz 10239 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ) |
| 75 | 74 | ad2antlr 489 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ) |
| 76 | 75 | peano2zd 9468 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ) |
| 77 | 76 | zred 9465 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ) |
| 78 | 68 | zred 9465 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ) |
| 79 | | elfzle2 10120 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1)) |
| 80 | 79 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1)) |
| 81 | | fzofzp1 10320 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
| 82 | 81 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁)) |
| 83 | | elfzle2 10120 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁) |
| 84 | 82, 83 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁) |
| 85 | 73, 77, 78, 80, 84 | letrd 8167 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ 𝑁) |
| 86 | 66, 68, 70, 72, 85 | elfzd 10108 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁)) |
| 87 | 65, 86, 36 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ) |
| 88 | 87 | fmpttd 5720 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ) |
| 89 | 28, 60, 61, 62, 64, 88 | gsumsplit1r 13100 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)))) |
| 90 | | fzssp1 10159 |
. . . . . . . . . . . 12
⊢ (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) |
| 91 | | resmpt 4995 |
. . . . . . . . . . . 12
⊢ ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
| 92 | 90, 91 | mp1i 10 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) |
| 93 | 92 | oveq2d 5941 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))) |
| 94 | | peano2uz 9674 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
| 95 | 63, 94 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
| 96 | 95 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈
(ℤ≥‘𝑀)) |
| 97 | | eluzfz2 10124 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈
(ℤ≥‘𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
| 98 | 96, 97 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1))) |
| 99 | | rspcsbela 3144 |
. . . . . . . . . . . 12
⊢ (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) →
⦋(𝑗 + 1) /
𝑘⦌𝐵 ∈
ℂ) |
| 100 | 81, 37, 99 | syl2anr 290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ⦋(𝑗 + 1) / 𝑘⦌𝐵 ∈ ℂ) |
| 101 | | eqid 2196 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) |
| 102 | 101 | fvmpts 5642 |
. . . . . . . . . . 11
⊢ (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ ⦋(𝑗 + 1) / 𝑘⦌𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
| 103 | 98, 100, 102 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
| 104 | 93, 103 | oveq12d 5943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 105 | | cnfld0 14203 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘ℂfld) |
| 106 | 29, 30 | mp1i 10 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈
Mnd) |
| 107 | 74 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ) |
| 108 | | fzelp1 10166 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1))) |
| 109 | 108, 87 | sylan2 286 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ) |
| 110 | 109 | fmpttd 5720 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ) |
| 111 | 28, 105, 106, 62, 107, 110 | gsumfzcl 13201 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ) |
| 112 | 111, 100 | addcld 8063 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) ∈ ℂ) |
| 113 | | oveq1 5932 |
. . . . . . . . . . 11
⊢ (𝑥 = (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦)) |
| 114 | | oveq2 5933 |
. . . . . . . . . . 11
⊢ (𝑦 = ⦋(𝑗 + 1) / 𝑘⦌𝐵 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 115 | | eqid 2196 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) |
| 116 | 113, 114,
115 | ovmpog 6061 |
. . . . . . . . . 10
⊢
(((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧
⦋(𝑗 + 1) /
𝑘⦌𝐵 ∈ ℂ ∧
((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵) ∈ ℂ) →
((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 117 | 111, 100,
112, 116 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⦋(𝑗 + 1) / 𝑘⦌𝐵) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 118 | 89, 104, 117 | 3eqtrd 2233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 119 | 118 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 120 | | fzsuc 10161 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)})) |
| 121 | 64, 120 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)})) |
| 122 | 121 | sumeq1d 11548 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵) |
| 123 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) |
| 124 | | nfcsb1v 3117 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝑗 + 1) / 𝑘⦌𝐵 |
| 125 | 62, 107 | fzfigd 10540 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin) |
| 126 | 107 | peano2zd 9468 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ) |
| 127 | | fzp1nel 10196 |
. . . . . . . . . . 11
⊢ ¬
(𝑗 + 1) ∈ (𝑀...𝑗) |
| 128 | 127 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗)) |
| 129 | | csbeq1a 3093 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑗 + 1) → 𝐵 = ⦋(𝑗 + 1) / 𝑘⦌𝐵) |
| 130 | 123, 124,
125, 126, 128, 109, 129, 100 | fsumsplitsn 11592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 131 | 122, 130 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 132 | 131 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + ⦋(𝑗 + 1) / 𝑘⦌𝐵)) |
| 133 | 59, 119, 132 | 3eqtr4d 2239 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵) |
| 134 | 133 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)) |
| 135 | 134 | expcom 116 |
. . . 4
⊢ (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
| 136 | 135 | a2d 26 |
. . 3
⊢ (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))) |
| 137 | 9, 15, 21, 27, 57, 136 | fzind2 10332 |
. 2
⊢ (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)) |
| 138 | 3, 137 | mpcom 36 |
1
⊢ (𝜑 → (ℂfld
Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵) |