ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm GIF version

Theorem gsumfzfsumlemm 14393
Description: Lemma for gsumfzfsum 14394. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n (𝜑𝑁 ∈ (ℤ𝑀))
gsumfzfsumlemm.b ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
gsumfzfsumlemm (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem gsumfzfsumlemm
Dummy variables 𝑗 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 10161 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 oveq2 5959 . . . . . . 7 (𝑤 = 𝑀 → (𝑀...𝑤) = (𝑀...𝑀))
54mpteq1d 4133 . . . . . 6 (𝑤 = 𝑀 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵))
65oveq2d 5967 . . . . 5 (𝑤 = 𝑀 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)))
74sumeq1d 11721 . . . . 5 (𝑤 = 𝑀 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
86, 7eqeq12d 2221 . . . 4 (𝑤 = 𝑀 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
98imbi2d 230 . . 3 (𝑤 = 𝑀 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)))
10 oveq2 5959 . . . . . . 7 (𝑤 = 𝑗 → (𝑀...𝑤) = (𝑀...𝑗))
1110mpteq1d 4133 . . . . . 6 (𝑤 = 𝑗 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
1211oveq2d 5967 . . . . 5 (𝑤 = 𝑗 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
1310sumeq1d 11721 . . . . 5 (𝑤 = 𝑗 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
1412, 13eqeq12d 2221 . . . 4 (𝑤 = 𝑗 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵))
1514imbi2d 230 . . 3 (𝑤 = 𝑗 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)))
16 oveq2 5959 . . . . . . 7 (𝑤 = (𝑗 + 1) → (𝑀...𝑤) = (𝑀...(𝑗 + 1)))
1716mpteq1d 4133 . . . . . 6 (𝑤 = (𝑗 + 1) → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵))
1817oveq2d 5967 . . . . 5 (𝑤 = (𝑗 + 1) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)))
1916sumeq1d 11721 . . . . 5 (𝑤 = (𝑗 + 1) → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
2018, 19eqeq12d 2221 . . . 4 (𝑤 = (𝑗 + 1) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
2120imbi2d 230 . . 3 (𝑤 = (𝑗 + 1) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
22 oveq2 5959 . . . . . . 7 (𝑤 = 𝑁 → (𝑀...𝑤) = (𝑀...𝑁))
2322mpteq1d 4133 . . . . . 6 (𝑤 = 𝑁 → (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵))
2423oveq2d 5967 . . . . 5 (𝑤 = 𝑁 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)))
2522sumeq1d 11721 . . . . 5 (𝑤 = 𝑁 → Σ𝑘 ∈ (𝑀...𝑤)𝐵 = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
2624, 25eqeq12d 2221 . . . 4 (𝑤 = 𝑁 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵 ↔ (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
2726imbi2d 230 . . 3 (𝑤 = 𝑁 → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑤) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑤)𝐵) ↔ (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)))
28 cnfldbas 14366 . . . . . 6 ℂ = (Base‘ℂfld)
29 cnring 14376 . . . . . . 7 fld ∈ Ring
30 ringmnd 13812 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 30mp1i 10 . . . . . 6 (𝜑 → ℂfld ∈ Mnd)
32 eluzel2 9660 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
331, 32syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
34 eluzfz1 10160 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
351, 34syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
36 gsumfzfsumlemm.b . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐵 ∈ ℂ)
3736ralrimiva 2580 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ)
38 nfcsb1v 3127 . . . . . . . . 9 𝑘𝑀 / 𝑘𝐵
3938nfel1 2360 . . . . . . . 8 𝑘𝑀 / 𝑘𝐵 ∈ ℂ
40 csbeq1a 3103 . . . . . . . . 9 (𝑘 = 𝑀𝐵 = 𝑀 / 𝑘𝐵)
4140eleq1d 2275 . . . . . . . 8 (𝑘 = 𝑀 → (𝐵 ∈ ℂ ↔ 𝑀 / 𝑘𝐵 ∈ ℂ))
4239, 41rspc 2872 . . . . . . 7 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ → 𝑀 / 𝑘𝐵 ∈ ℂ))
4335, 37, 42sylc 62 . . . . . 6 (𝜑𝑀 / 𝑘𝐵 ∈ ℂ)
4440adantl 277 . . . . . 6 ((𝜑𝑘 = 𝑀) → 𝐵 = 𝑀 / 𝑘𝐵)
45 nfv 1552 . . . . . 6 𝑘𝜑
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13725 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)) = 𝑀 / 𝑘𝐵)
47 fzsn 10195 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
4833, 47syl 14 . . . . . . 7 (𝜑 → (𝑀...𝑀) = {𝑀})
4948mpteq1d 4133 . . . . . 6 (𝜑 → (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵) = (𝑘 ∈ {𝑀} ↦ 𝐵))
5049oveq2d 5967 . . . . 5 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = (ℂfld Σg (𝑘 ∈ {𝑀} ↦ 𝐵)))
5147sumeq1d 11721 . . . . . . 7 (𝑀 ∈ ℤ → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
5233, 51syl 14 . . . . . 6 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = Σ𝑘 ∈ {𝑀}𝐵)
53 sumsns 11770 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5433, 43, 53syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀}𝐵 = 𝑀 / 𝑘𝐵)
5552, 54eqtrd 2239 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)𝐵 = 𝑀 / 𝑘𝐵)
5646, 50, 553eqtr4d 2249 . . . 4 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵)
5756a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑀) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑀)𝐵))
58 simpr 110 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵)
5958oveq1d 5966 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
60 mpocnfldadd 14367 . . . . . . . . . 10 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (+g‘ℂfld)
6129a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Ring)
6233adantr 276 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℤ)
63 elfzouz 10280 . . . . . . . . . . 11 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ (ℤ𝑀))
6463adantl 277 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ (ℤ𝑀))
65 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝜑)
6665, 33syl 14 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀 ∈ ℤ)
67 elfzoel2 10275 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
6867ad2antlr 489 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℤ)
69 elfzelz 10154 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ ℤ)
7069adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℤ)
71 elfzle1 10156 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑀𝑘)
7271adantl 277 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑀𝑘)
7370zred 9502 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ ℝ)
74 elfzoelz 10276 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀..^𝑁) → 𝑗 ∈ ℤ)
7574ad2antlr 489 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑗 ∈ ℤ)
7675peano2zd 9505 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℤ)
7776zred 9502 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ ℝ)
7868zred 9502 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑁 ∈ ℝ)
79 elfzle2 10157 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ≤ (𝑗 + 1))
8079adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ≤ (𝑗 + 1))
81 fzofzp1 10363 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (𝑀...𝑁))
8281ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ∈ (𝑀...𝑁))
83 elfzle2 10157 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (𝑀...𝑁) → (𝑗 + 1) ≤ 𝑁)
8482, 83syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝑗 + 1) ≤ 𝑁)
8573, 77, 78, 80, 84letrd 8203 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘𝑁)
8666, 68, 70, 72, 85elfzd 10145 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝑘 ∈ (𝑀...𝑁))
8765, 86, 36syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → 𝐵 ∈ ℂ)
8887fmpttd 5742 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵):(𝑀...(𝑗 + 1))⟶ℂ)
8928, 60, 61, 62, 64, 88gsumsplit1r 13274 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))))
90 fzssp1 10196 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1))
91 resmpt 5012 . . . . . . . . . . . 12 ((𝑀...𝑗) ⊆ (𝑀...(𝑗 + 1)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9290, 91mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)) = (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))
9392oveq2d 5967 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗))) = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)))
94 peano2uz 9711 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (ℤ𝑀))
9563, 94syl 14 . . . . . . . . . . . . 13 (𝑗 ∈ (𝑀..^𝑁) → (𝑗 + 1) ∈ (ℤ𝑀))
9695adantl 277 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (ℤ𝑀))
97 eluzfz2 10161 . . . . . . . . . . . 12 ((𝑗 + 1) ∈ (ℤ𝑀) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
9896, 97syl 14 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ (𝑀...(𝑗 + 1)))
99 rspcsbela 3154 . . . . . . . . . . . 12 (((𝑗 + 1) ∈ (𝑀...𝑁) ∧ ∀𝑘 ∈ (𝑀...𝑁)𝐵 ∈ ℂ) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
10081, 37, 99syl2anr 290 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) / 𝑘𝐵 ∈ ℂ)
101 eqid 2206 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) = (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)
102101fvmpts 5664 . . . . . . . . . . 11 (((𝑗 + 1) ∈ (𝑀...(𝑗 + 1)) ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10398, 100, 102syl2anc 411 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1)) = (𝑗 + 1) / 𝑘𝐵)
10493, 103oveq12d 5969 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg ((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵) ↾ (𝑀...𝑗)))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))((𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)‘(𝑗 + 1))) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵))
105 cnfld0 14377 . . . . . . . . . . 11 0 = (0g‘ℂfld)
10629, 30mp1i 10 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ℂfld ∈ Mnd)
10774adantl 277 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → 𝑗 ∈ ℤ)
108 fzelp1 10203 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (𝑀...(𝑗 + 1)))
109108, 87sylan2 286 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝐵 ∈ ℂ)
110109fmpttd 5742 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵):(𝑀...𝑗)⟶ℂ)
11128, 105, 106, 62, 107, 110gsumfzcl 13375 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ)
112111, 100addcld 8099 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ)
113 oveq1 5958 . . . . . . . . . . 11 (𝑥 = (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) → (𝑥 + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦))
114 oveq2 5959 . . . . . . . . . . 11 (𝑦 = (𝑗 + 1) / 𝑘𝐵 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + 𝑦) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
115 eqid 2206 . . . . . . . . . . 11 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))
116113, 114, 115ovmpog 6087 . . . . . . . . . 10 (((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) ∈ ℂ ∧ (𝑗 + 1) / 𝑘𝐵 ∈ ℂ ∧ ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵) ∈ ℂ) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
117111, 100, 112, 116syl3anc 1250 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵))(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))(𝑗 + 1) / 𝑘𝐵) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
11889, 104, 1173eqtrd 2243 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
119118adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) + (𝑗 + 1) / 𝑘𝐵))
120 fzsuc 10198 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
12164, 120syl 14 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...(𝑗 + 1)) = ((𝑀...𝑗) ∪ {(𝑗 + 1)}))
122121sumeq1d 11721 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵)
123 nfv 1552 . . . . . . . . . 10 𝑘(𝜑𝑗 ∈ (𝑀..^𝑁))
124 nfcsb1v 3127 . . . . . . . . . 10 𝑘(𝑗 + 1) / 𝑘𝐵
12562, 107fzfigd 10583 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑀...𝑗) ∈ Fin)
126107peano2zd 9505 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → (𝑗 + 1) ∈ ℤ)
127 fzp1nel 10233 . . . . . . . . . . 11 ¬ (𝑗 + 1) ∈ (𝑀...𝑗)
128127a1i 9 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ¬ (𝑗 + 1) ∈ (𝑀...𝑗))
129 csbeq1a 3103 . . . . . . . . . 10 (𝑘 = (𝑗 + 1) → 𝐵 = (𝑗 + 1) / 𝑘𝐵)
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11765 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ ((𝑀...𝑗) ∪ {(𝑗 + 1)})𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
131122, 130eqtrd 2239 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
132131adantr 276 . . . . . . 7 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵 = (Σ𝑘 ∈ (𝑀...𝑗)𝐵 + (𝑗 + 1) / 𝑘𝐵))
13359, 119, 1323eqtr4d 2249 . . . . . 6 (((𝜑𝑗 ∈ (𝑀..^𝑁)) ∧ (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)
134133ex 115 . . . . 5 ((𝜑𝑗 ∈ (𝑀..^𝑁)) → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵))
135134expcom 116 . . . 4 (𝑗 ∈ (𝑀..^𝑁) → (𝜑 → ((ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
136135a2d 26 . . 3 (𝑗 ∈ (𝑀..^𝑁) → ((𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑗) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑗)𝐵) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...(𝑗 + 1)) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...(𝑗 + 1))𝐵)))
1379, 15, 21, 27, 57, 136fzind2 10375 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵))
1383, 137mpcom 36 1 (𝜑 → (ℂfld Σg (𝑘 ∈ (𝑀...𝑁) ↦ 𝐵)) = Σ𝑘 ∈ (𝑀...𝑁)𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  csb 3094  cun 3165  wss 3167  {csn 3634   class class class wbr 4047  cmpt 4109  cres 4681  cfv 5276  (class class class)co 5951  cmpo 5953  cc 7930  0cc0 7932  1c1 7933   + caddc 7935  cle 8115  cz 9379  cuz 9655  ...cfz 10137  ..^cfzo 10271  Σcsu 11708   Σg cgsu 13133  Mndcmnd 13292  Ringcrg 13802  fldccnfld 14362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-starv 12968  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-0g 13134  df-igsum 13135  df-topgen 13136  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-mulg 13500  df-cmn 13666  df-mgp 13727  df-ring 13804  df-cring 13805  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363
This theorem is referenced by:  gsumfzfsum  14394
  Copyright terms: Public domain W3C validator