| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swrd00g | GIF version | ||
| Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| swrd00g | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑋 ∈ ℤ) → 𝑆 ∈ V) |
| 3 | simpr 110 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ) | |
| 4 | swrdval 11134 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅)) | |
| 5 | fzo0 10322 | . . . . . 6 ⊢ (𝑋..^𝑋) = ∅ | |
| 6 | 0ss 3503 | . . . . . 6 ⊢ ∅ ⊆ dom 𝑆 | |
| 7 | 5, 6 | eqsstri 3229 | . . . . 5 ⊢ (𝑋..^𝑋) ⊆ dom 𝑆 |
| 8 | 7 | iftruei 3581 | . . . 4 ⊢ if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) |
| 9 | zcn 9407 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℤ → 𝑋 ∈ ℂ) | |
| 10 | 9 | subidd 8401 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℤ → (𝑋 − 𝑋) = 0) |
| 11 | 10 | oveq2d 5978 | . . . . . . . 8 ⊢ (𝑋 ∈ ℤ → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 12 | 11 | 3ad2ant2 1022 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = (0..^0)) |
| 13 | fzo0 10322 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
| 14 | 12, 13 | eqtrdi 2255 | . . . . . 6 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (0..^(𝑋 − 𝑋)) = ∅) |
| 15 | 14 | mpteq1d 4140 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋)))) |
| 16 | mpt0 5418 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑆‘(𝑥 + 𝑋))) = ∅ | |
| 17 | 15, 16 | eqtrdi 2255 | . . . 4 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))) = ∅) |
| 18 | 8, 17 | eqtrid 2251 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → if((𝑋..^𝑋) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝑋 − 𝑋)) ↦ (𝑆‘(𝑥 + 𝑋))), ∅) = ∅) |
| 19 | 4, 18 | eqtrd 2239 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑋 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| 20 | 2, 3, 3, 19 | syl3anc 1250 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 ∅c0 3464 ifcif 3575 〈cop 3641 ↦ cmpt 4116 dom cdm 4688 ‘cfv 5285 (class class class)co 5962 0cc0 7955 + caddc 7958 − cmin 8273 ℤcz 9402 ..^cfzo 10294 substr csubstr 11131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-1o 6520 df-er 6638 df-en 6846 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-fzo 10295 df-substr 11132 |
| This theorem is referenced by: pfx00g 11161 |
| Copyright terms: Public domain | W3C validator |