| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0gsum | GIF version | ||
| Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.) |
| Ref | Expression |
|---|---|
| mulgnngsum.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnngsum.t | ⊢ · = (.g‘𝐺) |
| mulgnngsum.f | ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) |
| Ref | Expression |
|---|---|
| mulgnn0gsum | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9332 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | mulgnngsum.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnngsum.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 4 | mulgnngsum.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) | |
| 5 | 2, 3, 4 | mulgnngsum 13578 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 6 | 5 | ex 115 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 7 | 2 | basmex 13006 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → 𝐺 ∈ V) |
| 8 | 7 | adantl 277 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ V) |
| 9 | eqid 2207 | . . . . . . . 8 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 10 | 9 | gsum0g 13343 | . . . . . . 7 ⊢ (𝐺 ∈ V → (𝐺 Σg ∅) = (0g‘𝐺)) |
| 11 | 8, 10 | syl 14 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg ∅) = (0g‘𝐺)) |
| 12 | oveq2 5975 | . . . . . . . . . . . 12 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
| 13 | fz10 10203 | . . . . . . . . . . . 12 ⊢ (1...0) = ∅ | |
| 14 | 12, 13 | eqtrdi 2256 | . . . . . . . . . . 11 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
| 15 | 14 | mpteq1d 4145 | . . . . . . . . . 10 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = (𝑥 ∈ ∅ ↦ 𝑋)) |
| 16 | mpt0 5423 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ∅ ↦ 𝑋) = ∅ | |
| 17 | 15, 16 | eqtrdi 2256 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑥 ∈ (1...𝑁) ↦ 𝑋) = ∅) |
| 18 | 4, 17 | eqtrid 2252 | . . . . . . . 8 ⊢ (𝑁 = 0 → 𝐹 = ∅) |
| 19 | 18 | adantr 276 | . . . . . . 7 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → 𝐹 = ∅) |
| 20 | 19 | oveq2d 5983 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg 𝐹) = (𝐺 Σg ∅)) |
| 21 | oveq1 5974 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 22 | 2, 9, 3 | mulg0 13576 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 23 | 21, 22 | sylan9eq 2260 | . . . . . 6 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (0g‘𝐺)) |
| 24 | 11, 20, 23 | 3eqtr4rd 2251 | . . . . 5 ⊢ ((𝑁 = 0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| 25 | 24 | ex 115 | . . . 4 ⊢ (𝑁 = 0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 26 | 6, 25 | jaoi 718 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 27 | 1, 26 | sylbi 121 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑋 ∈ 𝐵 → (𝑁 · 𝑋) = (𝐺 Σg 𝐹))) |
| 28 | 27 | imp 124 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∅c0 3468 ↦ cmpt 4121 ‘cfv 5290 (class class class)co 5967 0cc0 7960 1c1 7961 ℕcn 9071 ℕ0cn0 9330 ...cfz 10165 Basecbs 12947 0gc0g 13203 Σg cgsu 13204 .gcmg 13570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-seqfrec 10630 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-igsum 13206 df-minusg 13451 df-mulg 13571 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |