ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mstps GIF version

Theorem mstps 14638
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 14637 . 2 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
2 xmstps 14636 . 2 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
31, 2syl 14 1 (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  TopSpctps 14209  ∞MetSpcxms 14515  MetSpcms 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-res 4672  df-iota 5216  df-fv 5263  df-xms 14518  df-ms 14519
This theorem is referenced by:  cnfldtps  14717
  Copyright terms: Public domain W3C validator