| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mstps | GIF version | ||
| Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| mstps | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms 15097 | . 2 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | |
| 2 | xmstps 15096 | . 2 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 TopSpctps 14669 ∞MetSpcxms 14975 MetSpcms 14976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-res 4708 df-iota 5254 df-fv 5302 df-xms 14978 df-ms 14979 |
| This theorem is referenced by: cnfldtps 15177 |
| Copyright terms: Public domain | W3C validator |