ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mstps GIF version

Theorem mstps 13253
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 13252 . 2 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
2 xmstps 13251 . 2 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
31, 2syl 14 1 (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  TopSpctps 12822  ∞MetSpcxms 13130  MetSpcms 13131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-res 4623  df-iota 5160  df-fv 5206  df-xms 13133  df-ms 13134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator