ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrks GIF version

Theorem fidcenumlemrks 6928
Description: Lemma for fidcenum 6931. Induction step for fidcenumlemrk 6929. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
fidcenumlemrks.j (𝜑𝐽 ∈ ω)
fidcenumlemrks.jn (𝜑 → suc 𝐽𝑁)
fidcenumlemrks.h (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
fidcenumlemrks.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fidcenumlemrks (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹   𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥)   𝐽(𝑥)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemrks
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹𝐽))
2 elun1 3294 . . . . 5 (𝑋 ∈ (𝐹𝐽) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
31, 2syl 14 . . . 4 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4 df-suc 4354 . . . . . . 7 suc 𝐽 = (𝐽 ∪ {𝐽})
54imaeq2i 4949 . . . . . 6 (𝐹 “ suc 𝐽) = (𝐹 “ (𝐽 ∪ {𝐽}))
6 imaundi 5021 . . . . . 6 (𝐹 “ (𝐽 ∪ {𝐽})) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
75, 6eqtri 2191 . . . . 5 (𝐹 “ suc 𝐽) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
87eleq2i 2237 . . . 4 (𝑋 ∈ (𝐹 “ suc 𝐽) ↔ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
93, 8sylibr 133 . . 3 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
109orcd 728 . 2 ((𝜑𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
11 simpr 109 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 = (𝐹𝐽))
12 fidcenumlemrks.x . . . . . . . . . 10 (𝜑𝑋𝐴)
13 elsng 3596 . . . . . . . . . 10 (𝑋𝐴 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
1412, 13syl 14 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
15 fidcenumlemr.f . . . . . . . . . . . 12 (𝜑𝐹:𝑁onto𝐴)
16 fofn 5420 . . . . . . . . . . . 12 (𝐹:𝑁onto𝐴𝐹 Fn 𝑁)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑁)
18 fidcenumlemrks.jn . . . . . . . . . . . 12 (𝜑 → suc 𝐽𝑁)
19 fidcenumlemrks.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ω)
20 sucidg 4399 . . . . . . . . . . . . 13 (𝐽 ∈ ω → 𝐽 ∈ suc 𝐽)
2119, 20syl 14 . . . . . . . . . . . 12 (𝜑𝐽 ∈ suc 𝐽)
2218, 21sseldd 3148 . . . . . . . . . . 11 (𝜑𝐽𝑁)
23 fnsnfv 5553 . . . . . . . . . . 11 ((𝐹 Fn 𝑁𝐽𝑁) → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2417, 22, 23syl2anc 409 . . . . . . . . . 10 (𝜑 → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2524eleq2d 2240 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2614, 25bitr3d 189 . . . . . . . 8 (𝜑 → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2726ad2antrr 485 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2811, 27mpbid 146 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ {𝐽}))
29 elun2 3295 . . . . . 6 (𝑋 ∈ (𝐹 “ {𝐽}) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3028, 29syl 14 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3130, 8sylibr 133 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
3231orcd 728 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
33 simplr 525 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹𝐽))
34 simpr 109 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 = (𝐹𝐽))
3526ad2antrr 485 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
3634, 35mtbid 667 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ {𝐽}))
37 ioran 747 . . . . . . 7 (¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})) ↔ (¬ 𝑋 ∈ (𝐹𝐽) ∧ ¬ 𝑋 ∈ (𝐹 “ {𝐽})))
3833, 36, 37sylanbrc 415 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
39 elun 3268 . . . . . 6 (𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})) ↔ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
4038, 39sylnibr 672 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4140, 8sylnibr 672 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))
4241olcd 729 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
43 fof 5418 . . . . . . . 8 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
4415, 43syl 14 . . . . . . 7 (𝜑𝐹:𝑁𝐴)
4544, 22ffvelrnd 5630 . . . . . 6 (𝜑 → (𝐹𝐽) ∈ 𝐴)
46 fidcenumlemr.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
47 eqeq1 2177 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
4847dcbid 833 . . . . . . 7 (𝑥 = 𝑋 → (DECID 𝑥 = 𝑦DECID 𝑋 = 𝑦))
49 eqeq2 2180 . . . . . . . 8 (𝑦 = (𝐹𝐽) → (𝑋 = 𝑦𝑋 = (𝐹𝐽)))
5049dcbid 833 . . . . . . 7 (𝑦 = (𝐹𝐽) → (DECID 𝑋 = 𝑦DECID 𝑋 = (𝐹𝐽)))
5148, 50rspc2va 2848 . . . . . 6 (((𝑋𝐴 ∧ (𝐹𝐽) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦) → DECID 𝑋 = (𝐹𝐽))
5212, 45, 46, 51syl21anc 1232 . . . . 5 (𝜑DECID 𝑋 = (𝐹𝐽))
53 exmiddc 831 . . . . 5 (DECID 𝑋 = (𝐹𝐽) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5452, 53syl 14 . . . 4 (𝜑 → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5554adantr 274 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5632, 42, 55mpjaodan 793 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
57 fidcenumlemrks.h . 2 (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
5810, 56, 57mpjaodan 793 1 (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wcel 2141  wral 2448  cun 3119  wss 3121  {csn 3581  suc csuc 4348  ωcom 4572  cima 4612   Fn wfn 5191  wf 5192  ontowfo 5194  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-suc 4354  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204
This theorem is referenced by:  fidcenumlemrk  6929
  Copyright terms: Public domain W3C validator