Proof of Theorem fidcenumlemrks
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ (𝐹 “ 𝐽)) |
2 | | elun1 3294 |
. . . . 5
⊢ (𝑋 ∈ (𝐹 “ 𝐽) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
3 | 1, 2 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
4 | | df-suc 4356 |
. . . . . . 7
⊢ suc 𝐽 = (𝐽 ∪ {𝐽}) |
5 | 4 | imaeq2i 4951 |
. . . . . 6
⊢ (𝐹 “ suc 𝐽) = (𝐹 “ (𝐽 ∪ {𝐽})) |
6 | | imaundi 5023 |
. . . . . 6
⊢ (𝐹 “ (𝐽 ∪ {𝐽})) = ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) |
7 | 5, 6 | eqtri 2191 |
. . . . 5
⊢ (𝐹 “ suc 𝐽) = ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) |
8 | 7 | eleq2i 2237 |
. . . 4
⊢ (𝑋 ∈ (𝐹 “ suc 𝐽) ↔ 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
9 | 3, 8 | sylibr 133 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽)) |
10 | 9 | orcd 728 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
11 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 = (𝐹‘𝐽)) |
12 | | fidcenumlemrks.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
13 | | elsng 3598 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 = (𝐹‘𝐽))) |
14 | 12, 13 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 = (𝐹‘𝐽))) |
15 | | fidcenumlemr.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) |
16 | | fofn 5422 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹 Fn 𝑁) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑁) |
18 | | fidcenumlemrks.jn |
. . . . . . . . . . . 12
⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) |
19 | | fidcenumlemrks.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ ω) |
20 | | sucidg 4401 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ ω → 𝐽 ∈ suc 𝐽) |
21 | 19, 20 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ suc 𝐽) |
22 | 18, 21 | sseldd 3148 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑁) |
23 | | fnsnfv 5555 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑁 ∧ 𝐽 ∈ 𝑁) → {(𝐹‘𝐽)} = (𝐹 “ {𝐽})) |
24 | 17, 22, 23 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → {(𝐹‘𝐽)} = (𝐹 “ {𝐽})) |
25 | 24 | eleq2d 2240 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
26 | 14, 25 | bitr3d 189 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
27 | 26 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
28 | 11, 27 | mpbid 146 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ (𝐹 “ {𝐽})) |
29 | | elun2 3295 |
. . . . . 6
⊢ (𝑋 ∈ (𝐹 “ {𝐽}) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
30 | 28, 29 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
31 | 30, 8 | sylibr 133 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽)) |
32 | 31 | orcd 728 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
33 | | simplr 525 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ 𝐽)) |
34 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 = (𝐹‘𝐽)) |
35 | 26 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
36 | 34, 35 | mtbid 667 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ {𝐽})) |
37 | | ioran 747 |
. . . . . . 7
⊢ (¬
(𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})) ↔ (¬ 𝑋 ∈ (𝐹 “ 𝐽) ∧ ¬ 𝑋 ∈ (𝐹 “ {𝐽}))) |
38 | 33, 36, 37 | sylanbrc 415 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ (𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽}))) |
39 | | elun 3268 |
. . . . . 6
⊢ (𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) ↔ (𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽}))) |
40 | 38, 39 | sylnibr 672 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
41 | 40, 8 | sylnibr 672 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)) |
42 | 41 | olcd 729 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
43 | | fof 5420 |
. . . . . . . 8
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹:𝑁⟶𝐴) |
44 | 15, 43 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑁⟶𝐴) |
45 | 44, 22 | ffvelrnd 5632 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐽) ∈ 𝐴) |
46 | | fidcenumlemr.dc |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
47 | | eqeq1 2177 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
48 | 47 | dcbid 833 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑋 = 𝑦)) |
49 | | eqeq2 2180 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝐽) → (𝑋 = 𝑦 ↔ 𝑋 = (𝐹‘𝐽))) |
50 | 49 | dcbid 833 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝐽) → (DECID 𝑋 = 𝑦 ↔ DECID 𝑋 = (𝐹‘𝐽))) |
51 | 48, 50 | rspc2va 2848 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐴 ∧ (𝐹‘𝐽) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) → DECID 𝑋 = (𝐹‘𝐽)) |
52 | 12, 45, 46, 51 | syl21anc 1232 |
. . . . 5
⊢ (𝜑 → DECID 𝑋 = (𝐹‘𝐽)) |
53 | | exmiddc 831 |
. . . . 5
⊢
(DECID 𝑋 = (𝐹‘𝐽) → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
54 | 52, 53 | syl 14 |
. . . 4
⊢ (𝜑 → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
55 | 54 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
56 | 32, 42, 55 | mpjaodan 793 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
57 | | fidcenumlemrks.h |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) |
58 | 10, 56, 57 | mpjaodan 793 |
1
⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |