ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrks GIF version

Theorem fidcenumlemrks 7062
Description: Lemma for fidcenum 7065. Induction step for fidcenumlemrk 7063. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
fidcenumlemrks.j (𝜑𝐽 ∈ ω)
fidcenumlemrks.jn (𝜑 → suc 𝐽𝑁)
fidcenumlemrks.h (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
fidcenumlemrks.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fidcenumlemrks (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹   𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥)   𝐽(𝑥)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemrks
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹𝐽))
2 elun1 3341 . . . . 5 (𝑋 ∈ (𝐹𝐽) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
31, 2syl 14 . . . 4 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4 df-suc 4422 . . . . . . 7 suc 𝐽 = (𝐽 ∪ {𝐽})
54imaeq2i 5025 . . . . . 6 (𝐹 “ suc 𝐽) = (𝐹 “ (𝐽 ∪ {𝐽}))
6 imaundi 5100 . . . . . 6 (𝐹 “ (𝐽 ∪ {𝐽})) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
75, 6eqtri 2227 . . . . 5 (𝐹 “ suc 𝐽) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
87eleq2i 2273 . . . 4 (𝑋 ∈ (𝐹 “ suc 𝐽) ↔ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
93, 8sylibr 134 . . 3 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
109orcd 735 . 2 ((𝜑𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
11 simpr 110 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 = (𝐹𝐽))
12 fidcenumlemrks.x . . . . . . . . . 10 (𝜑𝑋𝐴)
13 elsng 3649 . . . . . . . . . 10 (𝑋𝐴 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
1412, 13syl 14 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
15 fidcenumlemr.f . . . . . . . . . . . 12 (𝜑𝐹:𝑁onto𝐴)
16 fofn 5507 . . . . . . . . . . . 12 (𝐹:𝑁onto𝐴𝐹 Fn 𝑁)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑁)
18 fidcenumlemrks.jn . . . . . . . . . . . 12 (𝜑 → suc 𝐽𝑁)
19 fidcenumlemrks.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ω)
20 sucidg 4467 . . . . . . . . . . . . 13 (𝐽 ∈ ω → 𝐽 ∈ suc 𝐽)
2119, 20syl 14 . . . . . . . . . . . 12 (𝜑𝐽 ∈ suc 𝐽)
2218, 21sseldd 3195 . . . . . . . . . . 11 (𝜑𝐽𝑁)
23 fnsnfv 5645 . . . . . . . . . . 11 ((𝐹 Fn 𝑁𝐽𝑁) → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2417, 22, 23syl2anc 411 . . . . . . . . . 10 (𝜑 → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2524eleq2d 2276 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2614, 25bitr3d 190 . . . . . . . 8 (𝜑 → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2726ad2antrr 488 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2811, 27mpbid 147 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ {𝐽}))
29 elun2 3342 . . . . . 6 (𝑋 ∈ (𝐹 “ {𝐽}) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3028, 29syl 14 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3130, 8sylibr 134 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
3231orcd 735 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
33 simplr 528 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹𝐽))
34 simpr 110 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 = (𝐹𝐽))
3526ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
3634, 35mtbid 674 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ {𝐽}))
37 ioran 754 . . . . . . 7 (¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})) ↔ (¬ 𝑋 ∈ (𝐹𝐽) ∧ ¬ 𝑋 ∈ (𝐹 “ {𝐽})))
3833, 36, 37sylanbrc 417 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
39 elun 3315 . . . . . 6 (𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})) ↔ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
4038, 39sylnibr 679 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4140, 8sylnibr 679 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))
4241olcd 736 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
43 fof 5505 . . . . . . . 8 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
4415, 43syl 14 . . . . . . 7 (𝜑𝐹:𝑁𝐴)
4544, 22ffvelcdmd 5723 . . . . . 6 (𝜑 → (𝐹𝐽) ∈ 𝐴)
46 fidcenumlemr.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
47 eqeq1 2213 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
4847dcbid 840 . . . . . . 7 (𝑥 = 𝑋 → (DECID 𝑥 = 𝑦DECID 𝑋 = 𝑦))
49 eqeq2 2216 . . . . . . . 8 (𝑦 = (𝐹𝐽) → (𝑋 = 𝑦𝑋 = (𝐹𝐽)))
5049dcbid 840 . . . . . . 7 (𝑦 = (𝐹𝐽) → (DECID 𝑋 = 𝑦DECID 𝑋 = (𝐹𝐽)))
5148, 50rspc2va 2892 . . . . . 6 (((𝑋𝐴 ∧ (𝐹𝐽) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦) → DECID 𝑋 = (𝐹𝐽))
5212, 45, 46, 51syl21anc 1249 . . . . 5 (𝜑DECID 𝑋 = (𝐹𝐽))
53 exmiddc 838 . . . . 5 (DECID 𝑋 = (𝐹𝐽) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5452, 53syl 14 . . . 4 (𝜑 → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5554adantr 276 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5632, 42, 55mpjaodan 800 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
57 fidcenumlemrks.h . 2 (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
5810, 56, 57mpjaodan 800 1 (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cun 3165  wss 3167  {csn 3634  suc csuc 4416  ωcom 4642  cima 4682   Fn wfn 5271  wf 5272  ontowfo 5274  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-fo 5282  df-fv 5284
This theorem is referenced by:  fidcenumlemrk  7063
  Copyright terms: Public domain W3C validator