Proof of Theorem fidcenumlemrks
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ (𝐹 “ 𝐽)) |
| 2 | | elun1 3330 |
. . . . 5
⊢ (𝑋 ∈ (𝐹 “ 𝐽) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 3 | 1, 2 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 4 | | df-suc 4406 |
. . . . . . 7
⊢ suc 𝐽 = (𝐽 ∪ {𝐽}) |
| 5 | 4 | imaeq2i 5007 |
. . . . . 6
⊢ (𝐹 “ suc 𝐽) = (𝐹 “ (𝐽 ∪ {𝐽})) |
| 6 | | imaundi 5082 |
. . . . . 6
⊢ (𝐹 “ (𝐽 ∪ {𝐽})) = ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) |
| 7 | 5, 6 | eqtri 2217 |
. . . . 5
⊢ (𝐹 “ suc 𝐽) = ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) |
| 8 | 7 | eleq2i 2263 |
. . . 4
⊢ (𝑋 ∈ (𝐹 “ suc 𝐽) ↔ 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 9 | 3, 8 | sylibr 134 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽)) |
| 10 | 9 | orcd 734 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
| 11 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 = (𝐹‘𝐽)) |
| 12 | | fidcenumlemrks.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 13 | | elsng 3637 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 = (𝐹‘𝐽))) |
| 14 | 12, 13 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 = (𝐹‘𝐽))) |
| 15 | | fidcenumlemr.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝑁–onto→𝐴) |
| 16 | | fofn 5482 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹 Fn 𝑁) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn 𝑁) |
| 18 | | fidcenumlemrks.jn |
. . . . . . . . . . . 12
⊢ (𝜑 → suc 𝐽 ⊆ 𝑁) |
| 19 | | fidcenumlemrks.j |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ ω) |
| 20 | | sucidg 4451 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ ω → 𝐽 ∈ suc 𝐽) |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ suc 𝐽) |
| 22 | 18, 21 | sseldd 3184 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ 𝑁) |
| 23 | | fnsnfv 5620 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn 𝑁 ∧ 𝐽 ∈ 𝑁) → {(𝐹‘𝐽)} = (𝐹 “ {𝐽})) |
| 24 | 17, 22, 23 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → {(𝐹‘𝐽)} = (𝐹 “ {𝐽})) |
| 25 | 24 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑋 ∈ {(𝐹‘𝐽)} ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 26 | 14, 25 | bitr3d 190 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 27 | 26 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 28 | 11, 27 | mpbid 147 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ (𝐹 “ {𝐽})) |
| 29 | | elun2 3331 |
. . . . . 6
⊢ (𝑋 ∈ (𝐹 “ {𝐽}) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 30 | 28, 29 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 31 | 30, 8 | sylibr 134 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽)) |
| 32 | 31 | orcd 734 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ 𝑋 = (𝐹‘𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
| 33 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ 𝐽)) |
| 34 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 = (𝐹‘𝐽)) |
| 35 | 26 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → (𝑋 = (𝐹‘𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 36 | 34, 35 | mtbid 673 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ {𝐽})) |
| 37 | | ioran 753 |
. . . . . . 7
⊢ (¬
(𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})) ↔ (¬ 𝑋 ∈ (𝐹 “ 𝐽) ∧ ¬ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 38 | 33, 36, 37 | sylanbrc 417 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ (𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 39 | | elun 3304 |
. . . . . 6
⊢ (𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽})) ↔ (𝑋 ∈ (𝐹 “ 𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽}))) |
| 40 | 38, 39 | sylnibr 678 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ ((𝐹 “ 𝐽) ∪ (𝐹 “ {𝐽}))) |
| 41 | 40, 8 | sylnibr 678 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)) |
| 42 | 41 | olcd 735 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) ∧ ¬ 𝑋 = (𝐹‘𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
| 43 | | fof 5480 |
. . . . . . . 8
⊢ (𝐹:𝑁–onto→𝐴 → 𝐹:𝑁⟶𝐴) |
| 44 | 15, 43 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑁⟶𝐴) |
| 45 | 44, 22 | ffvelcdmd 5698 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐽) ∈ 𝐴) |
| 46 | | fidcenumlemr.dc |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 47 | | eqeq1 2203 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
| 48 | 47 | dcbid 839 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (DECID 𝑥 = 𝑦 ↔ DECID 𝑋 = 𝑦)) |
| 49 | | eqeq2 2206 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝐽) → (𝑋 = 𝑦 ↔ 𝑋 = (𝐹‘𝐽))) |
| 50 | 49 | dcbid 839 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝐽) → (DECID 𝑋 = 𝑦 ↔ DECID 𝑋 = (𝐹‘𝐽))) |
| 51 | 48, 50 | rspc2va 2882 |
. . . . . 6
⊢ (((𝑋 ∈ 𝐴 ∧ (𝐹‘𝐽) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) → DECID 𝑋 = (𝐹‘𝐽)) |
| 52 | 12, 45, 46, 51 | syl21anc 1248 |
. . . . 5
⊢ (𝜑 → DECID 𝑋 = (𝐹‘𝐽)) |
| 53 | | exmiddc 837 |
. . . . 5
⊢
(DECID 𝑋 = (𝐹‘𝐽) → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
| 54 | 52, 53 | syl 14 |
. . . 4
⊢ (𝜑 → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
| 55 | 54 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 = (𝐹‘𝐽) ∨ ¬ 𝑋 = (𝐹‘𝐽))) |
| 56 | 32, 42, 55 | mpjaodan 799 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹 “ 𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |
| 57 | | fidcenumlemrks.h |
. 2
⊢ (𝜑 → (𝑋 ∈ (𝐹 “ 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ 𝐽))) |
| 58 | 10, 56, 57 | mpjaodan 799 |
1
⊢ (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))) |