ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fidcenumlemrks GIF version

Theorem fidcenumlemrks 6849
Description: Lemma for fidcenum 6852. Induction step for fidcenumlemrk 6850. (Contributed by Jim Kingdon, 20-Oct-2022.)
Hypotheses
Ref Expression
fidcenumlemr.dc (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
fidcenumlemr.f (𝜑𝐹:𝑁onto𝐴)
fidcenumlemrks.j (𝜑𝐽 ∈ ω)
fidcenumlemrks.jn (𝜑 → suc 𝐽𝑁)
fidcenumlemrks.h (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
fidcenumlemrks.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fidcenumlemrks (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐹   𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥)   𝐽(𝑥)   𝑁(𝑥,𝑦)

Proof of Theorem fidcenumlemrks
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹𝐽))
2 elun1 3248 . . . . 5 (𝑋 ∈ (𝐹𝐽) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
31, 2syl 14 . . . 4 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4 df-suc 4301 . . . . . . 7 suc 𝐽 = (𝐽 ∪ {𝐽})
54imaeq2i 4887 . . . . . 6 (𝐹 “ suc 𝐽) = (𝐹 “ (𝐽 ∪ {𝐽}))
6 imaundi 4959 . . . . . 6 (𝐹 “ (𝐽 ∪ {𝐽})) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
75, 6eqtri 2161 . . . . 5 (𝐹 “ suc 𝐽) = ((𝐹𝐽) ∪ (𝐹 “ {𝐽}))
87eleq2i 2207 . . . 4 (𝑋 ∈ (𝐹 “ suc 𝐽) ↔ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
93, 8sylibr 133 . . 3 ((𝜑𝑋 ∈ (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
109orcd 723 . 2 ((𝜑𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
11 simpr 109 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 = (𝐹𝐽))
12 fidcenumlemrks.x . . . . . . . . . 10 (𝜑𝑋𝐴)
13 elsng 3547 . . . . . . . . . 10 (𝑋𝐴 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
1412, 13syl 14 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 = (𝐹𝐽)))
15 fidcenumlemr.f . . . . . . . . . . . 12 (𝜑𝐹:𝑁onto𝐴)
16 fofn 5355 . . . . . . . . . . . 12 (𝐹:𝑁onto𝐴𝐹 Fn 𝑁)
1715, 16syl 14 . . . . . . . . . . 11 (𝜑𝐹 Fn 𝑁)
18 fidcenumlemrks.jn . . . . . . . . . . . 12 (𝜑 → suc 𝐽𝑁)
19 fidcenumlemrks.j . . . . . . . . . . . . 13 (𝜑𝐽 ∈ ω)
20 sucidg 4346 . . . . . . . . . . . . 13 (𝐽 ∈ ω → 𝐽 ∈ suc 𝐽)
2119, 20syl 14 . . . . . . . . . . . 12 (𝜑𝐽 ∈ suc 𝐽)
2218, 21sseldd 3103 . . . . . . . . . . 11 (𝜑𝐽𝑁)
23 fnsnfv 5488 . . . . . . . . . . 11 ((𝐹 Fn 𝑁𝐽𝑁) → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2417, 22, 23syl2anc 409 . . . . . . . . . 10 (𝜑 → {(𝐹𝐽)} = (𝐹 “ {𝐽}))
2524eleq2d 2210 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {(𝐹𝐽)} ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2614, 25bitr3d 189 . . . . . . . 8 (𝜑 → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2726ad2antrr 480 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
2811, 27mpbid 146 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ {𝐽}))
29 elun2 3249 . . . . . 6 (𝑋 ∈ (𝐹 “ {𝐽}) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3028, 29syl 14 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
3130, 8sylibr 133 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → 𝑋 ∈ (𝐹 “ suc 𝐽))
3231orcd 723 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
33 simplr 520 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹𝐽))
34 simpr 109 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 = (𝐹𝐽))
3526ad2antrr 480 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ↔ 𝑋 ∈ (𝐹 “ {𝐽})))
3634, 35mtbid 662 . . . . . . 7 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ {𝐽}))
37 ioran 742 . . . . . . 7 (¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})) ↔ (¬ 𝑋 ∈ (𝐹𝐽) ∧ ¬ 𝑋 ∈ (𝐹 “ {𝐽})))
3833, 36, 37sylanbrc 414 . . . . . 6 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
39 elun 3222 . . . . . 6 (𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})) ↔ (𝑋 ∈ (𝐹𝐽) ∨ 𝑋 ∈ (𝐹 “ {𝐽})))
4038, 39sylnibr 667 . . . . 5 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ ((𝐹𝐽) ∪ (𝐹 “ {𝐽})))
4140, 8sylnibr 667 . . . 4 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → ¬ 𝑋 ∈ (𝐹 “ suc 𝐽))
4241olcd 724 . . 3 (((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) ∧ ¬ 𝑋 = (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
43 fof 5353 . . . . . . . 8 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
4415, 43syl 14 . . . . . . 7 (𝜑𝐹:𝑁𝐴)
4544, 22ffvelrnd 5564 . . . . . 6 (𝜑 → (𝐹𝐽) ∈ 𝐴)
46 fidcenumlemr.dc . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
47 eqeq1 2147 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
4847dcbid 824 . . . . . . 7 (𝑥 = 𝑋 → (DECID 𝑥 = 𝑦DECID 𝑋 = 𝑦))
49 eqeq2 2150 . . . . . . . 8 (𝑦 = (𝐹𝐽) → (𝑋 = 𝑦𝑋 = (𝐹𝐽)))
5049dcbid 824 . . . . . . 7 (𝑦 = (𝐹𝐽) → (DECID 𝑋 = 𝑦DECID 𝑋 = (𝐹𝐽)))
5148, 50rspc2va 2807 . . . . . 6 (((𝑋𝐴 ∧ (𝐹𝐽) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦) → DECID 𝑋 = (𝐹𝐽))
5212, 45, 46, 51syl21anc 1216 . . . . 5 (𝜑DECID 𝑋 = (𝐹𝐽))
53 exmiddc 822 . . . . 5 (DECID 𝑋 = (𝐹𝐽) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5452, 53syl 14 . . . 4 (𝜑 → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5554adantr 274 . . 3 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 = (𝐹𝐽) ∨ ¬ 𝑋 = (𝐹𝐽)))
5632, 42, 55mpjaodan 788 . 2 ((𝜑 ∧ ¬ 𝑋 ∈ (𝐹𝐽)) → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
57 fidcenumlemrks.h . 2 (𝜑 → (𝑋 ∈ (𝐹𝐽) ∨ ¬ 𝑋 ∈ (𝐹𝐽)))
5810, 56, 57mpjaodan 788 1 (𝜑 → (𝑋 ∈ (𝐹 “ suc 𝐽) ∨ ¬ 𝑋 ∈ (𝐹 “ suc 𝐽)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wral 2417  cun 3074  wss 3076  {csn 3532  suc csuc 4295  ωcom 4512  cima 4550   Fn wfn 5126  wf 5127  ontowfo 5129  cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fo 5137  df-fv 5139
This theorem is referenced by:  fidcenumlemrk  6850
  Copyright terms: Public domain W3C validator