Proof of Theorem rpdvds
Step | Hyp | Ref
| Expression |
1 | | simpl1 995 |
. . . . . 6
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → 𝐾 ∈ ℤ) |
2 | | simpl2 996 |
. . . . . 6
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → 𝑀 ∈ ℤ) |
3 | | gcddvds 11918 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀)) |
4 | 1, 2, 3 | syl2anc 409 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀)) |
5 | 4 | simpld 111 |
. . . 4
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ∥ 𝐾) |
6 | 4 | simprd 113 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑀) |
7 | | simprr 527 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → 𝑀 ∥ 𝑁) |
8 | | 1ne0 8946 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
9 | | simprl 526 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑁) = 1) |
10 | 9 | neeq1d 2358 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 gcd 𝑁) ≠ 0 ↔ 1 ≠ 0)) |
11 | 8, 10 | mpbiri 167 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑁) ≠ 0) |
12 | 11 | neneqd 2361 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ¬ (𝐾 gcd 𝑁) = 0) |
13 | | simprl 526 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝐾 = 0) |
14 | | simprr 527 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀 = 0) |
15 | | simplrr 531 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀 ∥ 𝑁) |
16 | 14, 15 | eqbrtrrd 4013 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 0 ∥ 𝑁) |
17 | | simpll3 1033 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 ∈ ℤ) |
18 | | 0dvds 11773 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
19 | 17, 18 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
20 | 16, 19 | mpbid 146 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 = 0) |
21 | 13, 20 | jca 304 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 = 0 ∧ 𝑁 = 0)) |
22 | 21 | ex 114 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 = 0 ∧ 𝑁 = 0))) |
23 | | simpl3 997 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → 𝑁 ∈ ℤ) |
24 | | gcdeq0 11932 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0))) |
25 | 1, 23, 24 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0))) |
26 | 22, 25 | sylibrd 168 |
. . . . . . . . 9
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 gcd 𝑁) = 0)) |
27 | 12, 26 | mtod 658 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ¬ (𝐾 = 0 ∧ 𝑀 = 0)) |
28 | | gcdn0cl 11917 |
. . . . . . . 8
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬
(𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 gcd 𝑀) ∈ ℕ) |
29 | 1, 2, 27, 28 | syl21anc 1232 |
. . . . . . 7
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ∈ ℕ) |
30 | 29 | nnzd 9333 |
. . . . . 6
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ∈ ℤ) |
31 | | dvdstr 11790 |
. . . . . 6
⊢ (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → (𝐾 gcd 𝑀) ∥ 𝑁)) |
32 | 30, 2, 23, 31 | syl3anc 1233 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → (𝐾 gcd 𝑀) ∥ 𝑁)) |
33 | 6, 7, 32 | mp2and 431 |
. . . 4
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑁) |
34 | 12, 25 | mtbid 667 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ¬ (𝐾 = 0 ∧ 𝑁 = 0)) |
35 | | dvdslegcd 11919 |
. . . . 5
⊢ ((((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑁 = 0)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁))) |
36 | 30, 1, 23, 34, 35 | syl31anc 1236 |
. . . 4
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁))) |
37 | 5, 33, 36 | mp2and 431 |
. . 3
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)) |
38 | 37, 9 | breqtrd 4015 |
. 2
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) ≤ 1) |
39 | | nnle1eq1 8902 |
. . 3
⊢ ((𝐾 gcd 𝑀) ∈ ℕ → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1)) |
40 | 29, 39 | syl 14 |
. 2
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1)) |
41 | 38, 40 | mpbid 146 |
1
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀 ∥ 𝑁)) → (𝐾 gcd 𝑀) = 1) |