ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpdvds GIF version

Theorem rpdvds 12098
Description: If 𝐾 is relatively prime to 𝑁 then it is also relatively prime to any divisor 𝑀 of 𝑁. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 1000 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝐾 ∈ ℤ)
2 simpl2 1001 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀 ∈ ℤ)
3 gcddvds 11963 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
41, 2, 3syl2anc 411 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑀))
54simpld 112 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝐾)
64simprd 114 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑀)
7 simprr 531 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑀𝑁)
8 1ne0 8986 . . . . . . . . . . 11 1 ≠ 0
9 simprl 529 . . . . . . . . . . . 12 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) = 1)
109neeq1d 2365 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) ≠ 0 ↔ 1 ≠ 0))
118, 10mpbiri 168 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑁) ≠ 0)
1211neneqd 2368 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 gcd 𝑁) = 0)
13 simprl 529 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝐾 = 0)
14 simprr 531 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀 = 0)
15 simplrr 536 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑀𝑁)
1614, 15eqbrtrrd 4027 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 0 ∥ 𝑁)
17 simpll3 1038 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 ∈ ℤ)
18 0dvds 11817 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
1917, 18syl 14 . . . . . . . . . . . . 13 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (0 ∥ 𝑁𝑁 = 0))
2016, 19mpbid 147 . . . . . . . . . . . 12 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → 𝑁 = 0)
2113, 20jca 306 . . . . . . . . . . 11 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) ∧ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 = 0 ∧ 𝑁 = 0))
2221ex 115 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 = 0 ∧ 𝑁 = 0)))
23 simpl3 1002 . . . . . . . . . . 11 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → 𝑁 ∈ ℤ)
24 gcdeq0 11977 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
251, 23, 24syl2anc 411 . . . . . . . . . 10 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑁) = 0 ↔ (𝐾 = 0 ∧ 𝑁 = 0)))
2622, 25sylibrd 169 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 = 0 ∧ 𝑀 = 0) → (𝐾 gcd 𝑁) = 0))
2712, 26mtod 663 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑀 = 0))
28 gcdn0cl 11962 . . . . . . . 8 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑀 = 0)) → (𝐾 gcd 𝑀) ∈ ℕ)
291, 2, 27, 28syl21anc 1237 . . . . . . 7 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℕ)
3029nnzd 9373 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∈ ℤ)
31 dvdstr 11834 . . . . . 6 (((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 gcd 𝑀) ∥ 𝑀𝑀𝑁) → (𝐾 gcd 𝑀) ∥ 𝑁))
3230, 2, 23, 31syl3anc 1238 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝑀𝑀𝑁) → (𝐾 gcd 𝑀) ∥ 𝑁))
336, 7, 32mp2and 433 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ∥ 𝑁)
3412, 25mtbid 672 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ¬ (𝐾 = 0 ∧ 𝑁 = 0))
35 dvdslegcd 11964 . . . . 5 ((((𝐾 gcd 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝐾 = 0 ∧ 𝑁 = 0)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
3630, 1, 23, 34, 35syl31anc 1241 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (((𝐾 gcd 𝑀) ∥ 𝐾 ∧ (𝐾 gcd 𝑀) ∥ 𝑁) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁)))
375, 33, 36mp2and 433 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ (𝐾 gcd 𝑁))
3837, 9breqtrd 4029 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) ≤ 1)
39 nnle1eq1 8942 . . 3 ((𝐾 gcd 𝑀) ∈ ℕ → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
4029, 39syl 14 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → ((𝐾 gcd 𝑀) ≤ 1 ↔ (𝐾 gcd 𝑀) = 1))
4138, 40mpbid 147 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐾 gcd 𝑁) = 1 ∧ 𝑀𝑁)) → (𝐾 gcd 𝑀) = 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wne 2347   class class class wbr 4003  (class class class)co 5874  0cc0 7810  1c1 7811  cle 7992  cn 8918  cz 9252  cdvds 11793   gcd cgcd 11942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-sup 6982  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fzo 10142  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-dvds 11794  df-gcd 11943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator