| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > zdclt | GIF version | ||
| Description: Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.) | 
| Ref | Expression | 
|---|---|
| zdclt | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ztri3or 9369 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | |
| 2 | zre 9330 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 3 | zre 9330 | . . 3 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 4 | orc 713 | . . . . . 6 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
| 5 | df-dc 836 | . . . . . 6 ⊢ (DECID 𝐴 < 𝐵 ↔ (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
| 6 | 4, 5 | sylibr 134 | . . . . 5 ⊢ (𝐴 < 𝐵 → DECID 𝐴 < 𝐵) | 
| 7 | 6 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → DECID 𝐴 < 𝐵)) | 
| 8 | ltnr 8103 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 9 | 8 | adantr 276 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴) | 
| 10 | breq2 4037 | . . . . . . . . 9 ⊢ (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | |
| 11 | 10 | adantl 277 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴 < 𝐴 ↔ 𝐴 < 𝐵)) | 
| 12 | 9, 11 | mtbid 673 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵) | 
| 13 | olc 712 | . . . . . . . 8 ⊢ (¬ 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵)) | |
| 14 | 13, 5 | sylibr 134 | . . . . . . 7 ⊢ (¬ 𝐴 < 𝐵 → DECID 𝐴 < 𝐵) | 
| 15 | 12, 14 | syl 14 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 < 𝐵) | 
| 16 | 15 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 = 𝐵 → DECID 𝐴 < 𝐵)) | 
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → DECID 𝐴 < 𝐵)) | 
| 18 | ltnsym 8112 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) | |
| 19 | 18 | ancoms 268 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵)) | 
| 20 | 19, 14 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → DECID 𝐴 < 𝐵)) | 
| 21 | 7, 17, 20 | 3jaod 1315 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 < 𝐵)) | 
| 22 | 2, 3, 21 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → DECID 𝐴 < 𝐵)) | 
| 23 | 1, 22 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ℝcr 7878 < clt 8061 ℤcz 9326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 | 
| This theorem is referenced by: fztri3or 10114 modifeq2int 10478 modsumfzodifsn 10488 seqf1oglem1 10611 seqf1oglem2 10612 exp3val 10633 cvgratz 11697 bitsfzolem 12118 infpnlem1 12528 infpnlem2 12529 gsumfzval 13034 gsumfzz 13127 gsumfzcl 13131 mulgval 13252 mulgfng 13254 subgmulg 13318 gsumfzreidx 13467 gsumfzsubmcl 13468 gsumfzmptfidmadd 13469 gsumfzmhm 13473 gsumfzfsum 14144 lgsval 15245 lgscllem 15248 lgsneg 15265 lgsdilem 15268 lgsdir 15276 lgsdi 15278 lgsne0 15279 lgsquadlemsfi 15316 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |