ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zdclt GIF version

Theorem zdclt 9403
Description: Integer < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
Assertion
Ref Expression
zdclt ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)

Proof of Theorem zdclt
StepHypRef Expression
1 ztri3or 9369 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴))
2 zre 9330 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
3 zre 9330 . . 3 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
4 orc 713 . . . . . 6 (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
5 df-dc 836 . . . . . 6 (DECID 𝐴 < 𝐵 ↔ (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
64, 5sylibr 134 . . . . 5 (𝐴 < 𝐵DECID 𝐴 < 𝐵)
76a1i 9 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵DECID 𝐴 < 𝐵))
8 ltnr 8103 . . . . . . . . 9 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
98adantr 276 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐴)
10 breq2 4037 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
1110adantl 277 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → (𝐴 < 𝐴𝐴 < 𝐵))
129, 11mtbid 673 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → ¬ 𝐴 < 𝐵)
13 olc 712 . . . . . . . 8 𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ ¬ 𝐴 < 𝐵))
1413, 5sylibr 134 . . . . . . 7 𝐴 < 𝐵DECID 𝐴 < 𝐵)
1512, 14syl 14 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → DECID 𝐴 < 𝐵)
1615ex 115 . . . . 5 (𝐴 ∈ ℝ → (𝐴 = 𝐵DECID 𝐴 < 𝐵))
1716adantr 276 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵DECID 𝐴 < 𝐵))
18 ltnsym 8112 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
1918ancoms 268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → ¬ 𝐴 < 𝐵))
2019, 14syl6 33 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴DECID 𝐴 < 𝐵))
217, 17, 203jaod 1315 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 < 𝐵))
222, 3, 21syl2an 289 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴) → DECID 𝐴 < 𝐵))
231, 22mpd 13 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 < 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167   class class class wbr 4033  cr 7878   < clt 8061  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  fztri3or  10114  modifeq2int  10478  modsumfzodifsn  10488  seqf1oglem1  10611  seqf1oglem2  10612  exp3val  10633  cvgratz  11697  bitsfzolem  12118  infpnlem1  12528  infpnlem2  12529  gsumfzval  13034  gsumfzz  13127  gsumfzcl  13131  mulgval  13252  mulgfng  13254  subgmulg  13318  gsumfzreidx  13467  gsumfzsubmcl  13468  gsumfzmptfidmadd  13469  gsumfzmhm  13473  gsumfzfsum  14144  lgsval  15245  lgscllem  15248  lgsneg  15265  lgsdilem  15268  lgsdir  15276  lgsdi  15278  lgsne0  15279  lgsquadlemsfi  15316  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator