ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcval5 GIF version

Theorem bcval5 10774
Description: Write out the top and bottom parts of the binomial coefficient (𝑁C𝐾) = (𝑁 · (𝑁 − 1) · ... · ((𝑁𝐾) + 1)) / 𝐾! explicitly. In this form, it is valid even for 𝑁 < 𝐾, although it is no longer valid for nonpositive 𝐾. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
Assertion
Ref Expression
bcval5 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))

Proof of Theorem bcval5
Dummy variables 𝑥 𝑘 𝑦 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcval2 10761 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
21adantl 277 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3 simprl 529 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝑘 ∈ ℂ)
4 simprr 531 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → 𝑥 ∈ ℂ)
53, 4mulcld 8007 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
6 simpr1 1005 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑘 ∈ ℂ)
7 simpr2 1006 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑥 ∈ ℂ)
8 simpr3 1007 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → 𝑦 ∈ ℂ)
96, 7, 8mulassd 8010 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
10 simpll 527 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
1110nn0zd 9402 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
12 simplr 528 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
1312nnzd 9403 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
1411, 13zsubcld 9409 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
1514peano2zd 9407 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
16 1red 8001 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℝ)
1712nnred 8961 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
1810nn0red 9259 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
1912nnge1d 8991 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 1 ≤ 𝐾)
2016, 17, 18, 19lesub2dd 8548 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ≤ (𝑁 − 1))
2114zred 9404 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
22 leaddsub 8424 . . . . . . . . . . . 12 (((𝑁𝐾) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑁𝐾) + 1) ≤ 𝑁 ↔ (𝑁𝐾) ≤ (𝑁 − 1)))
2321, 16, 18, 22syl3anc 1249 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁𝐾) + 1) ≤ 𝑁 ↔ (𝑁𝐾) ≤ (𝑁 − 1)))
2420, 23mpbird 167 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 𝑁)
25 eluz2 9563 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)) ↔ (((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑁𝐾) + 1) ≤ 𝑁))
2615, 11, 24, 25syl3anbrc 1183 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
2726adantrr 479 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ (ℤ‘((𝑁𝐾) + 1)))
28 simprr 531 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ ℕ)
29 nnuz 9592 . . . . . . . . 9 ℕ = (ℤ‘1)
3028, 29eleqtrdi 2282 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (𝑁𝐾) ∈ (ℤ‘1))
31 fvi 5593 . . . . . . . . . 10 (𝑘 ∈ V → ( I ‘𝑘) = 𝑘)
3231elv 2756 . . . . . . . . 9 ( I ‘𝑘) = 𝑘
33 eluzelcn 9568 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℂ)
3433adantl 277 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℂ)
3532, 34eqeltrid 2276 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) ∧ 𝑘 ∈ (ℤ‘1)) → ( I ‘𝑘) ∈ ℂ)
365, 9, 27, 30, 35seq3split 10509 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (seq1( · , I )‘𝑁) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
37 elfzuz3 10051 . . . . . . . . . . 11 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
3837adantl 277 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝐾))
39 eluznn 9629 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ ℕ)
4012, 38, 39syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ)
4140adantrr 479 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → 𝑁 ∈ ℕ)
42 facnn 10738 . . . . . . . 8 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
4341, 42syl 14 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
44 facnn 10738 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4528, 44syl 14 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘(𝑁𝐾)) = (seq1( · , I )‘(𝑁𝐾)))
4645oveq1d 5910 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = ((seq1( · , I )‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4736, 43, 463eqtr4d 2232 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ (𝐾 ∈ (0...𝑁) ∧ (𝑁𝐾) ∈ ℕ)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
4847expr 375 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
4910faccld 10747 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
5049nncnd 8962 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
5150mulid2d 8005 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (!‘𝑁))
5240, 42syl 14 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (seq1( · , I )‘𝑁))
5352oveq2d 5911 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (1 · (!‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
5451, 53eqtr3d 2224 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (1 · (seq1( · , I )‘𝑁)))
55 fveq2 5534 . . . . . . . . 9 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = (!‘0))
56 fac0 10739 . . . . . . . . 9 (!‘0) = 1
5755, 56eqtrdi 2238 . . . . . . . 8 ((𝑁𝐾) = 0 → (!‘(𝑁𝐾)) = 1)
58 oveq1 5902 . . . . . . . . . . 11 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = (0 + 1))
59 0p1e1 9062 . . . . . . . . . . 11 (0 + 1) = 1
6058, 59eqtrdi 2238 . . . . . . . . . 10 ((𝑁𝐾) = 0 → ((𝑁𝐾) + 1) = 1)
6160seqeq1d 10481 . . . . . . . . 9 ((𝑁𝐾) = 0 → seq((𝑁𝐾) + 1)( · , I ) = seq1( · , I ))
6261fveq1d 5536 . . . . . . . 8 ((𝑁𝐾) = 0 → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = (seq1( · , I )‘𝑁))
6357, 62oveq12d 5913 . . . . . . 7 ((𝑁𝐾) = 0 → ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) = (1 · (seq1( · , I )‘𝑁)))
6463eqeq2d 2201 . . . . . 6 ((𝑁𝐾) = 0 → ((!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) ↔ (!‘𝑁) = (1 · (seq1( · , I )‘𝑁))))
6554, 64syl5ibrcom 157 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) = 0 → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁))))
66 fznn0sub 10086 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
6766adantl 277 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
68 elnn0 9207 . . . . . 6 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
6967, 68sylib 122 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
7048, 65, 69mpjaod 719 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = ((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)))
7170oveq1d 5910 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
72 eqid 2189 . . . . . 6 (ℤ‘((𝑁𝐾) + 1)) = (ℤ‘((𝑁𝐾) + 1))
73 fvi 5593 . . . . . . . 8 (𝑓 ∈ V → ( I ‘𝑓) = 𝑓)
7473elv 2756 . . . . . . 7 ( I ‘𝑓) = 𝑓
75 eluzelcn 9568 . . . . . . . 8 (𝑓 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑓 ∈ ℂ)
7675adantl 277 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑓 ∈ (ℤ‘((𝑁𝐾) + 1))) → 𝑓 ∈ ℂ)
7774, 76eqeltrid 2276 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑓 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑓) ∈ ℂ)
78 mulcl 7967 . . . . . . 7 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
7978adantl 277 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
8072, 15, 77, 79seqf 10491 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → seq((𝑁𝐾) + 1)( · , I ):(ℤ‘((𝑁𝐾) + 1))⟶ℂ)
8180, 26ffvelcdmd 5672 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) ∈ ℂ)
8212nnnn0d 9258 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
8382faccld 10747 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
8483nncnd 8962 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
8567faccld 10747 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
8685nncnd 8962 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
8783nnap0d 8994 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) # 0)
8885nnap0d 8994 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) # 0)
8981, 84, 86, 87, 88divcanap5d 8803 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (((!‘(𝑁𝐾)) · (seq((𝑁𝐾) + 1)( · , I )‘𝑁)) / ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
902, 71, 893eqtrd 2226 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
91 simplr 528 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ)
9291nnnn0d 9258 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
9392faccld 10747 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
9493nncnd 8962 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
9593nnap0d 8994 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) # 0)
9694, 95div0apd 8773 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 / (!‘𝐾)) = 0)
97 mulcl 7967 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
9897adantl 277 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
99 eluzelcn 9568 . . . . . . 7 (𝑘 ∈ (ℤ‘((𝑁𝐾) + 1)) → 𝑘 ∈ ℂ)
10099adantl 277 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → 𝑘 ∈ ℂ)
10132, 100eqeltrid 2276 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (ℤ‘((𝑁𝐾) + 1))) → ( I ‘𝑘) ∈ ℂ)
102 simpr 110 . . . . . 6 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → 𝑘 ∈ ℂ)
103102mul02d 8378 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (0 · 𝑘) = 0)
104102mul01d 8379 . . . . 5 ((((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ ℂ) → (𝑘 · 0) = 0)
105 simpr 110 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 ∈ (0...𝑁))
106 nn0uz 9591 . . . . . . . . . . . 12 0 = (ℤ‘0)
10792, 106eleqtrdi 2282 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ (ℤ‘0))
108 simpll 527 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
109108nn0zd 9402 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
110 elfz5 10046 . . . . . . . . . . 11 ((𝐾 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
111107, 109, 110syl2anc 411 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 𝐾𝑁))
112 nn0re 9214 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
113112ad2antrr 488 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ)
114 nnre 8955 . . . . . . . . . . . 12 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
115114ad2antlr 489 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℝ)
116113, 115subge0d 8521 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ≤ (𝑁𝐾) ↔ 𝐾𝑁))
117111, 116bitr4d 191 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝐾 ∈ (0...𝑁) ↔ 0 ≤ (𝑁𝐾)))
118105, 117mtbid 673 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ¬ 0 ≤ (𝑁𝐾))
119 simpl 109 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → 𝑁 ∈ ℕ0)
120119nn0zd 9402 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → 𝑁 ∈ ℤ)
121 simpr 110 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → 𝐾 ∈ ℕ)
122121nnzd 9403 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → 𝐾 ∈ ℤ)
123120, 122zsubcld 9409 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁𝐾) ∈ ℤ)
124123adantr 276 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
125 0z 9293 . . . . . . . . 9 0 ∈ ℤ
126 zltnle 9328 . . . . . . . . 9 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
127124, 125, 126sylancl 413 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ¬ 0 ≤ (𝑁𝐾)))
128118, 127mpbird 167 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < 0)
129 zltp1le 9336 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
130124, 125, 129sylancl 413 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) < 0 ↔ ((𝑁𝐾) + 1) ≤ 0))
131128, 130mpbid 147 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ≤ 0)
132 nn0ge0 9230 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
133132ad2antrr 488 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ≤ 𝑁)
134 0zd 9294 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ ℤ)
135124peano2zd 9407 . . . . . . 7 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
136 elfz 10043 . . . . . . 7 ((0 ∈ ℤ ∧ ((𝑁𝐾) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
137134, 135, 109, 136syl3anc 1249 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (0 ∈ (((𝑁𝐾) + 1)...𝑁) ↔ (((𝑁𝐾) + 1) ≤ 0 ∧ 0 ≤ 𝑁)))
138131, 133, 137mpbir2and 946 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → 0 ∈ (((𝑁𝐾) + 1)...𝑁))
139 0cn 7978 . . . . . 6 0 ∈ ℂ
140 fvi 5593 . . . . . 6 (0 ∈ ℂ → ( I ‘0) = 0)
141139, 140mp1i 10 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ( I ‘0) = 0)
14298, 101, 103, 104, 138, 141seq3z 10541 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (seq((𝑁𝐾) + 1)( · , I )‘𝑁) = 0)
143142oveq1d 5910 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)) = (0 / (!‘𝐾)))
144 nnz 9301 . . . . 5 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
145 bcval3 10762 . . . . 5 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
146144, 145syl3an2 1283 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1471463expa 1205 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
14896, 143, 1473eqtr4rd 2233 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℕ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
149 0zd 9294 . . . 4 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → 0 ∈ ℤ)
150 fzdcel 10069 . . . 4 ((𝐾 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝐾 ∈ (0...𝑁))
151122, 149, 120, 150syl3anc 1249 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → DECID 𝐾 ∈ (0...𝑁))
152 exmiddc 837 . . 3 (DECID 𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
153151, 152syl 14 . 2 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝐾 ∈ (0...𝑁) ∨ ¬ 𝐾 ∈ (0...𝑁)))
15490, 148, 153mpjaodan 799 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℕ) → (𝑁C𝐾) = ((seq((𝑁𝐾) + 1)( · , I )‘𝑁) / (!‘𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2160  Vcvv 2752   class class class wbr 4018   I cid 4306  cfv 5235  (class class class)co 5895  cc 7838  cr 7839  0cc0 7840  1c1 7841   + caddc 7843   · cmul 7845   < clt 8021  cle 8022  cmin 8157   / cdiv 8658  cn 8948  0cn0 9205  cz 9282  cuz 9557  ...cfz 10037  seqcseq 10475  !cfa 10736  Ccbc 10758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-fz 10038  df-seqfrec 10476  df-fac 10737  df-bc 10759
This theorem is referenced by:  bcn2  10775
  Copyright terms: Public domain W3C validator