Proof of Theorem oddpwdclemodd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | oddpwdclemndvds 12339 | 
. . 3
⊢ (𝐴 ∈ ℕ → ¬
(2↑((℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) | 
| 2 |   | 2cn 9061 | 
. . . . 5
⊢ 2 ∈
ℂ | 
| 3 |   | pw2dvdseu 12336 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ →
∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) | 
| 4 |   | riotacl 5892 | 
. . . . . 6
⊢
(∃!𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴) → (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (𝐴 ∈ ℕ →
(℩𝑧 ∈
ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈
ℕ0) | 
| 6 |   | expp1 10638 | 
. . . . 5
⊢ ((2
∈ ℂ ∧ (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) ∈ ℕ0) →
(2↑((℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2)) | 
| 7 | 2, 5, 6 | sylancr 414 | 
. . . 4
⊢ (𝐴 ∈ ℕ →
(2↑((℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2)) | 
| 8 | 7 | breq1d 4043 | 
. . 3
⊢ (𝐴 ∈ ℕ →
((2↑((℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴 ↔ ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥ 𝐴)) | 
| 9 | 1, 8 | mtbid 673 | 
. 2
⊢ (𝐴 ∈ ℕ → ¬
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥ 𝐴) | 
| 10 |   | nncn 8998 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) | 
| 11 |   | 2nn 9152 | 
. . . . . . . . 9
⊢ 2 ∈
ℕ | 
| 12 | 11 | a1i 9 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℕ → 2 ∈
ℕ) | 
| 13 | 12, 5 | nnexpcld 10787 | 
. . . . . . 7
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) | 
| 14 | 13 | nncnd 9004 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℂ) | 
| 15 | 13 | nnap0d 9036 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) # 0) | 
| 16 | 10, 14, 15 | divcanap2d 8819 | 
. . . . 5
⊢ (𝐴 ∈ ℕ →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) = 𝐴) | 
| 17 | 16 | eqcomd 2202 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 = ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 18 | 17 | breq2d 4045 | 
. . 3
⊢ (𝐴 ∈ ℕ →
(((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥ 𝐴 ↔ ((2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))))) | 
| 19 | 12 | nnzd 9447 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 2 ∈
ℤ) | 
| 20 |   | id 19 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ) | 
| 21 |   | oddpwdclemdvds 12338 | 
. . . . . 6
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) | 
| 22 |   | nndivdvds 11961 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) →
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴 ↔ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ)) | 
| 23 | 22 | biimpa 296 | 
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℕ) ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) → (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) | 
| 24 | 20, 13, 21, 23 | syl21anc 1248 | 
. . . . 5
⊢ (𝐴 ∈ ℕ → (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℕ) | 
| 25 | 24 | nnzd 9447 | 
. . . 4
⊢ (𝐴 ∈ ℕ → (𝐴 / (2↑(℩𝑧 ∈ ℕ0
((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℤ) | 
| 26 | 13 | nnzd 9447 | 
. . . 4
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℤ) | 
| 27 | 13 | nnne0d 9035 | 
. . . 4
⊢ (𝐴 ∈ ℕ →
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ≠ 0) | 
| 28 |   | dvdscmulr 11985 | 
. . . 4
⊢ ((2
∈ ℤ ∧ (𝐴 /
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∈ ℤ ∧
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∈ ℤ ∧
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ≠ 0)) →
(((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 29 | 19, 25, 26, 27, 28 | syl112anc 1253 | 
. . 3
⊢ (𝐴 ∈ ℕ →
(((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥
((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 30 | 18, 29 | bitrd 188 | 
. 2
⊢ (𝐴 ∈ ℕ →
(((2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) · 2) ∥ 𝐴 ↔ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))))) | 
| 31 | 9, 30 | mtbid 673 | 
1
⊢ (𝐴 ∈ ℕ → ¬ 2
∥ (𝐴 /
(2↑(℩𝑧
∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) |