ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddpwdclemodd GIF version

Theorem oddpwdclemodd 12174
Description: Lemma for oddpwdc 12176. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
oddpwdclemodd (๐ด โˆˆ โ„• โ†’ ยฌ 2 โˆฅ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))))
Distinct variable group:   ๐‘ง,๐ด

Proof of Theorem oddpwdclemodd
StepHypRef Expression
1 oddpwdclemndvds 12173 . . 3 (๐ด โˆˆ โ„• โ†’ ยฌ (2โ†‘((โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) + 1)) โˆฅ ๐ด)
2 2cn 8992 . . . . 5 2 โˆˆ โ„‚
3 pw2dvdseu 12170 . . . . . 6 (๐ด โˆˆ โ„• โ†’ โˆƒ!๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))
4 riotacl 5847 . . . . . 6 (โˆƒ!๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด) โ†’ (โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) โˆˆ โ„•0)
53, 4syl 14 . . . . 5 (๐ด โˆˆ โ„• โ†’ (โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) โˆˆ โ„•0)
6 expp1 10529 . . . . 5 ((2 โˆˆ โ„‚ โˆง (โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) โˆˆ โ„•0) โ†’ (2โ†‘((โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) + 1)) = ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2))
72, 5, 6sylancr 414 . . . 4 (๐ด โˆˆ โ„• โ†’ (2โ†‘((โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) + 1)) = ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2))
87breq1d 4015 . . 3 (๐ด โˆˆ โ„• โ†’ ((2โ†‘((โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)) + 1)) โˆฅ ๐ด โ†” ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ๐ด))
91, 8mtbid 672 . 2 (๐ด โˆˆ โ„• โ†’ ยฌ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ๐ด)
10 nncn 8929 . . . . . 6 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„‚)
11 2nn 9082 . . . . . . . . 9 2 โˆˆ โ„•
1211a1i 9 . . . . . . . 8 (๐ด โˆˆ โ„• โ†’ 2 โˆˆ โ„•)
1312, 5nnexpcld 10678 . . . . . . 7 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„•)
1413nncnd 8935 . . . . . 6 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„‚)
1513nnap0d 8967 . . . . . 6 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) # 0)
1610, 14, 15divcanap2d 8751 . . . . 5 (๐ด โˆˆ โ„• โ†’ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))) = ๐ด)
1716eqcomd 2183 . . . 4 (๐ด โˆˆ โ„• โ†’ ๐ด = ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))))
1817breq2d 4017 . . 3 (๐ด โˆˆ โ„• โ†’ (((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ๐ด โ†” ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))))))
1912nnzd 9376 . . . 4 (๐ด โˆˆ โ„• โ†’ 2 โˆˆ โ„ค)
20 id 19 . . . . . 6 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„•)
21 oddpwdclemdvds 12172 . . . . . 6 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆฅ ๐ด)
22 nndivdvds 11805 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„•) โ†’ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆฅ ๐ด โ†” (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))) โˆˆ โ„•))
2322biimpa 296 . . . . . 6 (((๐ด โˆˆ โ„• โˆง (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„•) โˆง (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆฅ ๐ด) โ†’ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))) โˆˆ โ„•)
2420, 13, 21, 23syl21anc 1237 . . . . 5 (๐ด โˆˆ โ„• โ†’ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))) โˆˆ โ„•)
2524nnzd 9376 . . . 4 (๐ด โˆˆ โ„• โ†’ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))) โˆˆ โ„ค)
2613nnzd 9376 . . . 4 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„ค)
2713nnne0d 8966 . . . 4 (๐ด โˆˆ โ„• โ†’ (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โ‰  0)
28 dvdscmulr 11829 . . . 4 ((2 โˆˆ โ„ค โˆง (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))) โˆˆ โ„ค โˆง ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โˆˆ โ„ค โˆง (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) โ‰  0)) โ†’ (((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))) โ†” 2 โˆฅ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))))
2919, 25, 26, 27, 28syl112anc 1242 . . 3 (๐ด โˆˆ โ„• โ†’ (((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))) โ†” 2 โˆฅ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))))
3018, 29bitrd 188 . 2 (๐ด โˆˆ โ„• โ†’ (((2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))) ยท 2) โˆฅ ๐ด โ†” 2 โˆฅ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด))))))
319, 30mtbid 672 1 (๐ด โˆˆ โ„• โ†’ ยฌ 2 โˆฅ (๐ด / (2โ†‘(โ„ฉ๐‘ง โˆˆ โ„•0 ((2โ†‘๐‘ง) โˆฅ ๐ด โˆง ยฌ (2โ†‘(๐‘ง + 1)) โˆฅ ๐ด)))))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   = wceq 1353   โˆˆ wcel 2148   โ‰  wne 2347  โˆƒ!wreu 2457   class class class wbr 4005  โ„ฉcrio 5832  (class class class)co 5877  โ„‚cc 7811  0cc0 7813  1c1 7814   + caddc 7816   ยท cmul 7818   / cdiv 8631  โ„•cn 8921  2c2 8972  โ„•0cn0 9178  โ„คcz 9255  โ†‘cexp 10521   โˆฅ cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-dvds 11797
This theorem is referenced by:  oddpwdclemdc  12175
  Copyright terms: Public domain W3C validator