Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od GIF version

Theorem frec2uzf1od 10186
 Description: 𝐺 (see frec2uz0d 10179) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzf1od (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzf1od
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9070 . . . . . . . . 9 ℤ ∈ V
21mptex 5646 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
3 vex 2689 . . . . . . . 8 𝑧 ∈ V
42, 3fvex 5441 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
54ax-gen 1425 . . . . . 6 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
6 frec2uz.1 . . . . . 6 (𝜑𝐶 ∈ ℤ)
7 frecfnom 6298 . . . . . 6 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
85, 6, 7sylancr 410 . . . . 5 (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5217 . . . . 5 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 133 . . . 4 (𝜑𝐺 Fn ω)
126, 9frec2uzrand 10185 . . . . 5 (𝜑 → ran 𝐺 = (ℤ𝐶))
13 eqimss 3151 . . . . 5 (ran 𝐺 = (ℤ𝐶) → ran 𝐺 ⊆ (ℤ𝐶))
1412, 13syl 14 . . . 4 (𝜑 → ran 𝐺 ⊆ (ℤ𝐶))
15 df-f 5127 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
1611, 14, 15sylanbrc 413 . . 3 (𝜑𝐺:ω⟶(ℤ𝐶))
176adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝐶 ∈ ℤ)
18 simpr 109 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
1917, 9, 18frec2uzzd 10180 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ ℤ)
20193adant3 1001 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℤ)
2120zred 9180 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℝ)
2221ltnrd 7882 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺𝑦) < (𝐺𝑦))
2322adantr 274 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑦))
24 simpr 109 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝐺𝑦) = (𝐺𝑧))
2524breq2d 3941 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑦) < (𝐺𝑧)))
2623, 25mtbid 661 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑧))
27173adant3 1001 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
28 simp2 982 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω)
29 simp3 983 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
3027, 9, 28, 29frec2uzltd 10183 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
3130con3d 620 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3231adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3326, 32mpd 13 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑦𝑧)
3424breq1d 3939 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑧) < (𝐺𝑦)))
3523, 34mtbid 661 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑧) < (𝐺𝑦))
3627, 9, 29, 28frec2uzltd 10183 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3736adantr 274 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3835, 37mtod 652 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑧𝑦)
39 nntri3 6393 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
40393adant1 999 . . . . . . . 8 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4140adantr 274 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4233, 38, 41mpbir2and 928 . . . . . 6 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → 𝑦 = 𝑧)
4342ex 114 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
44433expb 1182 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
4544ralrimivva 2514 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
46 dff13 5669 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
4716, 45, 46sylanbrc 413 . 2 (𝜑𝐺:ω–1-1→(ℤ𝐶))
48 dff1o5 5376 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
4947, 12, 48sylanbrc 413 1 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962  ∀wal 1329   = wceq 1331   ∈ wcel 1480  ∀wral 2416  Vcvv 2686   ⊆ wss 3071   class class class wbr 3929   ↦ cmpt 3989  ωcom 4504  ran crn 4540   Fn wfn 5118  ⟶wf 5119  –1-1→wf1 5120  –1-1-onto→wf1o 5122  ‘cfv 5123  (class class class)co 5774  freccfrec 6287  1c1 7628   + caddc 7630   < clt 7807  ℤcz 9061  ℤ≥cuz 9333 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334 This theorem is referenced by:  frec2uzisod  10187  frecuzrdglem  10191  frecuzrdgtcl  10192  frecuzrdgsuc  10194  frecuzrdgg  10196  frecuzrdgdomlem  10197  frecuzrdgfunlem  10199  frecuzrdgsuctlem  10203  uzenom  10205  frecfzennn  10206  frechashgf1o  10208  frec2uzled  10209  hashfz1  10536  hashen  10537  ennnfonelemjn  11921  ennnfonelem1  11926  ennnfonelemhf1o  11932  ennnfonelemrn  11938
 Copyright terms: Public domain W3C validator