ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od GIF version

Theorem frec2uzf1od 10406
Description: 𝐺 (see frec2uz0d 10399) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzf1od (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzf1od
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9262 . . . . . . . . 9 ℤ ∈ V
21mptex 5743 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
3 vex 2741 . . . . . . . 8 𝑧 ∈ V
42, 3fvex 5536 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
54ax-gen 1449 . . . . . 6 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
6 frec2uz.1 . . . . . 6 (𝜑𝐶 ∈ ℤ)
7 frecfnom 6402 . . . . . 6 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
85, 6, 7sylancr 414 . . . . 5 (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5311 . . . . 5 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . 4 (𝜑𝐺 Fn ω)
126, 9frec2uzrand 10405 . . . . 5 (𝜑 → ran 𝐺 = (ℤ𝐶))
13 eqimss 3210 . . . . 5 (ran 𝐺 = (ℤ𝐶) → ran 𝐺 ⊆ (ℤ𝐶))
1412, 13syl 14 . . . 4 (𝜑 → ran 𝐺 ⊆ (ℤ𝐶))
15 df-f 5221 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
1611, 14, 15sylanbrc 417 . . 3 (𝜑𝐺:ω⟶(ℤ𝐶))
176adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝐶 ∈ ℤ)
18 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
1917, 9, 18frec2uzzd 10400 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ ℤ)
20193adant3 1017 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℤ)
2120zred 9375 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℝ)
2221ltnrd 8069 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺𝑦) < (𝐺𝑦))
2322adantr 276 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑦))
24 simpr 110 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝐺𝑦) = (𝐺𝑧))
2524breq2d 4016 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑦) < (𝐺𝑧)))
2623, 25mtbid 672 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑧))
27173adant3 1017 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
28 simp2 998 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω)
29 simp3 999 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
3027, 9, 28, 29frec2uzltd 10403 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
3130con3d 631 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3231adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3326, 32mpd 13 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑦𝑧)
3424breq1d 4014 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑧) < (𝐺𝑦)))
3523, 34mtbid 672 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑧) < (𝐺𝑦))
3627, 9, 29, 28frec2uzltd 10403 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3736adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3835, 37mtod 663 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑧𝑦)
39 nntri3 6498 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
40393adant1 1015 . . . . . . . 8 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4140adantr 276 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4233, 38, 41mpbir2and 944 . . . . . 6 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → 𝑦 = 𝑧)
4342ex 115 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
44433expb 1204 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
4544ralrimivva 2559 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
46 dff13 5769 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
4716, 45, 46sylanbrc 417 . 2 (𝜑𝐺:ω–1-1→(ℤ𝐶))
48 dff1o5 5471 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
4947, 12, 48sylanbrc 417 1 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wal 1351   = wceq 1353  wcel 2148  wral 2455  Vcvv 2738  wss 3130   class class class wbr 4004  cmpt 4065  ωcom 4590  ran crn 4628   Fn wfn 5212  wf 5213  1-1wf1 5214  1-1-ontowf1o 5216  cfv 5217  (class class class)co 5875  freccfrec 6391  1c1 7812   + caddc 7814   < clt 7992  cz 9253  cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529
This theorem is referenced by:  frec2uzisod  10407  frecuzrdglem  10411  frecuzrdgtcl  10412  frecuzrdgsuc  10414  frecuzrdgg  10416  frecuzrdgdomlem  10417  frecuzrdgfunlem  10419  frecuzrdgsuctlem  10423  uzenom  10425  frecfzennn  10426  frechashgf1o  10428  frec2uzled  10429  hashfz1  10763  hashen  10764  ennnfonelemjn  12403  ennnfonelem1  12408  ennnfonelemhf1o  12414  ennnfonelemrn  12420  ssnnctlemct  12447
  Copyright terms: Public domain W3C validator