| Step | Hyp | Ref
 | Expression | 
| 1 |   | zex 9335 | 
. . . . . . . . 9
⊢ ℤ
∈ V | 
| 2 | 1 | mptex 5788 | 
. . . . . . . 8
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V | 
| 3 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑧 ∈ V | 
| 4 | 2, 3 | fvex 5578 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V | 
| 5 | 4 | ax-gen 1463 | 
. . . . . 6
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V | 
| 6 |   | frec2uz.1 | 
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 7 |   | frecfnom 6459 | 
. . . . . 6
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) | 
| 8 | 5, 6, 7 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) | 
| 9 |   | frec2uz.2 | 
. . . . . 6
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | 
| 10 | 9 | fneq1i 5352 | 
. . . . 5
⊢ (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) | 
| 11 | 8, 10 | sylibr 134 | 
. . . 4
⊢ (𝜑 → 𝐺 Fn ω) | 
| 12 | 6, 9 | frec2uzrand 10497 | 
. . . . 5
⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) | 
| 13 |   | eqimss 3237 | 
. . . . 5
⊢ (ran
𝐺 =
(ℤ≥‘𝐶) → ran 𝐺 ⊆ (ℤ≥‘𝐶)) | 
| 14 | 12, 13 | syl 14 | 
. . . 4
⊢ (𝜑 → ran 𝐺 ⊆ (ℤ≥‘𝐶)) | 
| 15 |   | df-f 5262 | 
. . . 4
⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | 
| 16 | 11, 14, 15 | sylanbrc 417 | 
. . 3
⊢ (𝜑 → 𝐺:ω⟶(ℤ≥‘𝐶)) | 
| 17 | 6 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝐶 ∈ ℤ) | 
| 18 |   | simpr 110 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω) | 
| 19 | 17, 9, 18 | frec2uzzd 10492 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ ℤ) | 
| 20 | 19 | 3adant3 1019 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘𝑦) ∈ ℤ) | 
| 21 | 20 | zred 9448 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘𝑦) ∈ ℝ) | 
| 22 | 21 | ltnrd 8138 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺‘𝑦) < (𝐺‘𝑦)) | 
| 23 | 22 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑦) < (𝐺‘𝑦)) | 
| 24 |   | simpr 110 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝐺‘𝑦) = (𝐺‘𝑧)) | 
| 25 | 24 | breq2d 4045 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ((𝐺‘𝑦) < (𝐺‘𝑦) ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) | 
| 26 | 23, 25 | mtbid 673 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑦) < (𝐺‘𝑧)) | 
| 27 | 17 | 3adant3 1019 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ) | 
| 28 |   | simp2 1000 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω) | 
| 29 |   | simp3 1001 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω) | 
| 30 | 27, 9, 28, 29 | frec2uzltd 10495 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) | 
| 31 | 30 | con3d 632 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺‘𝑦) < (𝐺‘𝑧) → ¬ 𝑦 ∈ 𝑧)) | 
| 32 | 31 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (¬ (𝐺‘𝑦) < (𝐺‘𝑧) → ¬ 𝑦 ∈ 𝑧)) | 
| 33 | 26, 32 | mpd 13 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ 𝑦 ∈ 𝑧) | 
| 34 | 24 | breq1d 4043 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ((𝐺‘𝑦) < (𝐺‘𝑦) ↔ (𝐺‘𝑧) < (𝐺‘𝑦))) | 
| 35 | 23, 34 | mtbid 673 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑧) < (𝐺‘𝑦)) | 
| 36 | 27, 9, 29, 28 | frec2uzltd 10495 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) | 
| 37 | 36 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) | 
| 38 | 35, 37 | mtod 664 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ 𝑧 ∈ 𝑦) | 
| 39 |   | nntri3 6555 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) | 
| 40 | 39 | 3adant1 1017 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) | 
| 41 | 40 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) | 
| 42 | 33, 38, 41 | mpbir2and 946 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → 𝑦 = 𝑧) | 
| 43 | 42 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) | 
| 44 | 43 | 3expb 1206 | 
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) | 
| 45 | 44 | ralrimivva 2579 | 
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) | 
| 46 |   | dff13 5815 | 
. . 3
⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | 
| 47 | 16, 45, 46 | sylanbrc 417 | 
. 2
⊢ (𝜑 → 𝐺:ω–1-1→(ℤ≥‘𝐶)) | 
| 48 |   | dff1o5 5513 | 
. 2
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | 
| 49 | 47, 12, 48 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |