ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od GIF version

Theorem frec2uzf1od 10477
Description: 𝐺 (see frec2uz0d 10470) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzf1od (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzf1od
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9326 . . . . . . . . 9 ℤ ∈ V
21mptex 5784 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
3 vex 2763 . . . . . . . 8 𝑧 ∈ V
42, 3fvex 5574 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
54ax-gen 1460 . . . . . 6 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
6 frec2uz.1 . . . . . 6 (𝜑𝐶 ∈ ℤ)
7 frecfnom 6454 . . . . . 6 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
85, 6, 7sylancr 414 . . . . 5 (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5348 . . . . 5 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . 4 (𝜑𝐺 Fn ω)
126, 9frec2uzrand 10476 . . . . 5 (𝜑 → ran 𝐺 = (ℤ𝐶))
13 eqimss 3233 . . . . 5 (ran 𝐺 = (ℤ𝐶) → ran 𝐺 ⊆ (ℤ𝐶))
1412, 13syl 14 . . . 4 (𝜑 → ran 𝐺 ⊆ (ℤ𝐶))
15 df-f 5258 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
1611, 14, 15sylanbrc 417 . . 3 (𝜑𝐺:ω⟶(ℤ𝐶))
176adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝐶 ∈ ℤ)
18 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
1917, 9, 18frec2uzzd 10471 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ ℤ)
20193adant3 1019 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℤ)
2120zred 9439 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℝ)
2221ltnrd 8131 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺𝑦) < (𝐺𝑦))
2322adantr 276 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑦))
24 simpr 110 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝐺𝑦) = (𝐺𝑧))
2524breq2d 4041 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑦) < (𝐺𝑧)))
2623, 25mtbid 673 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑧))
27173adant3 1019 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
28 simp2 1000 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω)
29 simp3 1001 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
3027, 9, 28, 29frec2uzltd 10474 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
3130con3d 632 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3231adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3326, 32mpd 13 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑦𝑧)
3424breq1d 4039 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑧) < (𝐺𝑦)))
3523, 34mtbid 673 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑧) < (𝐺𝑦))
3627, 9, 29, 28frec2uzltd 10474 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3736adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3835, 37mtod 664 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑧𝑦)
39 nntri3 6550 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
40393adant1 1017 . . . . . . . 8 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4140adantr 276 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4233, 38, 41mpbir2and 946 . . . . . 6 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → 𝑦 = 𝑧)
4342ex 115 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
44433expb 1206 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
4544ralrimivva 2576 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
46 dff13 5811 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
4716, 45, 46sylanbrc 417 . 2 (𝜑𝐺:ω–1-1→(ℤ𝐶))
48 dff1o5 5509 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
4947, 12, 48sylanbrc 417 1 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  wss 3153   class class class wbr 4029  cmpt 4090  ωcom 4622  ran crn 4660   Fn wfn 5249  wf 5250  1-1wf1 5251  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  freccfrec 6443  1c1 7873   + caddc 7875   < clt 8054  cz 9317  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frec2uzisod  10478  frecuzrdglem  10482  frecuzrdgtcl  10483  frecuzrdgsuc  10485  frecuzrdgg  10487  frecuzrdgdomlem  10488  frecuzrdgfunlem  10490  frecuzrdgsuctlem  10494  uzenom  10496  frecfzennn  10497  frechashgf1o  10499  frec2uzled  10500  hashfz1  10854  hashen  10855  nninfctlemfo  12177  ennnfonelemjn  12559  ennnfonelem1  12564  ennnfonelemhf1o  12570  ennnfonelemrn  12576  ssnnctlemct  12603
  Copyright terms: Public domain W3C validator