ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzf1od GIF version

Theorem frec2uzf1od 10405
Description: 𝐺 (see frec2uz0d 10398) is a one-to-one onto mapping. (Contributed by Jim Kingdon, 17-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frec2uzf1od (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem frec2uzf1od
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 9261 . . . . . . . . 9 ℤ ∈ V
21mptex 5742 . . . . . . . 8 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
3 vex 2740 . . . . . . . 8 𝑧 ∈ V
42, 3fvex 5535 . . . . . . 7 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
54ax-gen 1449 . . . . . 6 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
6 frec2uz.1 . . . . . 6 (𝜑𝐶 ∈ ℤ)
7 frecfnom 6401 . . . . . 6 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
85, 6, 7sylancr 414 . . . . 5 (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
9 frec2uz.2 . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
109fneq1i 5310 . . . . 5 (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω)
118, 10sylibr 134 . . . 4 (𝜑𝐺 Fn ω)
126, 9frec2uzrand 10404 . . . . 5 (𝜑 → ran 𝐺 = (ℤ𝐶))
13 eqimss 3209 . . . . 5 (ran 𝐺 = (ℤ𝐶) → ran 𝐺 ⊆ (ℤ𝐶))
1412, 13syl 14 . . . 4 (𝜑 → ran 𝐺 ⊆ (ℤ𝐶))
15 df-f 5220 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
1611, 14, 15sylanbrc 417 . . 3 (𝜑𝐺:ω⟶(ℤ𝐶))
176adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝐶 ∈ ℤ)
18 simpr 110 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ω) → 𝑦 ∈ ω)
1917, 9, 18frec2uzzd 10399 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ ℤ)
20193adant3 1017 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℤ)
2120zred 9374 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺𝑦) ∈ ℝ)
2221ltnrd 8068 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺𝑦) < (𝐺𝑦))
2322adantr 276 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑦))
24 simpr 110 . . . . . . . . . 10 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝐺𝑦) = (𝐺𝑧))
2524breq2d 4015 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑦) < (𝐺𝑧)))
2623, 25mtbid 672 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑦) < (𝐺𝑧))
27173adant3 1017 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ)
28 simp2 998 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω)
29 simp3 999 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω)
3027, 9, 28, 29frec2uzltd 10402 . . . . . . . . . 10 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
3130con3d 631 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3231adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (¬ (𝐺𝑦) < (𝐺𝑧) → ¬ 𝑦𝑧))
3326, 32mpd 13 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑦𝑧)
3424breq1d 4013 . . . . . . . . 9 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ((𝐺𝑦) < (𝐺𝑦) ↔ (𝐺𝑧) < (𝐺𝑦)))
3523, 34mtbid 672 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ (𝐺𝑧) < (𝐺𝑦))
3627, 9, 29, 28frec2uzltd 10402 . . . . . . . . 9 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3736adantr 276 . . . . . . . 8 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3835, 37mtod 663 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → ¬ 𝑧𝑦)
39 nntri3 6497 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
40393adant1 1015 . . . . . . . 8 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4140adantr 276 . . . . . . 7 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦𝑧 ∧ ¬ 𝑧𝑦)))
4233, 38, 41mpbir2and 944 . . . . . 6 (((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺𝑦) = (𝐺𝑧)) → 𝑦 = 𝑧)
4342ex 115 . . . . 5 ((𝜑𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
44433expb 1204 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
4544ralrimivva 2559 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
46 dff13 5768 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
4716, 45, 46sylanbrc 417 . 2 (𝜑𝐺:ω–1-1→(ℤ𝐶))
48 dff1o5 5470 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
4947, 12, 48sylanbrc 417 1 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978  wal 1351   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129   class class class wbr 4003  cmpt 4064  ωcom 4589  ran crn 4627   Fn wfn 5211  wf 5212  1-1wf1 5213  1-1-ontowf1o 5215  cfv 5216  (class class class)co 5874  freccfrec 6390  1c1 7811   + caddc 7813   < clt 7991  cz 9252  cuz 9527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528
This theorem is referenced by:  frec2uzisod  10406  frecuzrdglem  10410  frecuzrdgtcl  10411  frecuzrdgsuc  10413  frecuzrdgg  10415  frecuzrdgdomlem  10416  frecuzrdgfunlem  10418  frecuzrdgsuctlem  10422  uzenom  10424  frecfzennn  10425  frechashgf1o  10427  frec2uzled  10428  hashfz1  10762  hashen  10763  ennnfonelemjn  12402  ennnfonelem1  12407  ennnfonelemhf1o  12413  ennnfonelemrn  12419  ssnnctlemct  12446
  Copyright terms: Public domain W3C validator