![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rimul | GIF version |
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
rimul | ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelr 8605 | . . 3 ⊢ ¬ i ∈ ℝ | |
2 | recexre 8599 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | 2 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
4 | simplll 533 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 8050 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
6 | simprl 529 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
7 | 6 | recnd 8050 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
8 | ax-icn 7969 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
9 | mulass 8005 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) | |
10 | 8, 9 | mp3an1 1335 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
11 | 5, 7, 10 | syl2anc 411 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
12 | oveq2 5927 | . . . . . . . . 9 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1)) | |
13 | 8 | mulid1i 8023 | . . . . . . . . 9 ⊢ (i · 1) = i |
14 | 12, 13 | eqtrdi 2242 | . . . . . . . 8 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i) |
15 | 14 | ad2antll 491 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i) |
16 | 11, 15 | eqtrd 2226 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i) |
17 | simpllr 534 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ) | |
18 | 17, 6 | remulcld 8052 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ) |
19 | 16, 18 | eqeltrrd 2271 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ) |
20 | 3, 19 | rexlimddv 2616 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → i ∈ ℝ) |
21 | 20 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 #ℝ 0 → i ∈ ℝ)) |
22 | 1, 21 | mtoi 665 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 #ℝ 0) |
23 | 0re 8021 | . . . 4 ⊢ 0 ∈ ℝ | |
24 | reapti 8600 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) | |
25 | 23, 24 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
26 | 25 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
27 | 22, 26 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 ici 7876 · cmul 7879 #ℝ creap 8595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-sub 8194 df-neg 8195 df-reap 8596 |
This theorem is referenced by: rereim 8607 cru 8623 cju 8982 crre 11004 |
Copyright terms: Public domain | W3C validator |