ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul GIF version

Theorem rimul 8606
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)

Proof of Theorem rimul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inelr 8605 . . 3 ¬ i ∈ ℝ
2 recexre 8599 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
32adantlr 477 . . . . 5 (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4 simplll 533 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ)
54recnd 8050 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
6 simprl 529 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ)
76recnd 8050 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
8 ax-icn 7969 . . . . . . . . 9 i ∈ ℂ
9 mulass 8005 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
108, 9mp3an1 1335 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
115, 7, 10syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
12 oveq2 5927 . . . . . . . . 9 ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1))
138mulid1i 8023 . . . . . . . . 9 (i · 1) = i
1412, 13eqtrdi 2242 . . . . . . . 8 ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i)
1514ad2antll 491 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i)
1611, 15eqtrd 2226 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i)
17 simpllr 534 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ)
1817, 6remulcld 8052 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ)
1916, 18eqeltrrd 2271 . . . . 5 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ)
203, 19rexlimddv 2616 . . . 4 (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) → i ∈ ℝ)
2120ex 115 . . 3 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 # 0 → i ∈ ℝ))
221, 21mtoi 665 . 2 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 # 0)
23 0re 8021 . . . 4 0 ∈ ℝ
24 reapti 8600 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2523, 24mpan2 425 . . 3 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2625adantr 276 . 2 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2722, 26mpbird 167 1 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875  ici 7876   · cmul 7879   # creap 8595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-sub 8194  df-neg 8195  df-reap 8596
This theorem is referenced by:  rereim  8607  cru  8623  cju  8982  crre  11004
  Copyright terms: Public domain W3C validator