ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rimul GIF version

Theorem rimul 8540
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)

Proof of Theorem rimul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inelr 8539 . . 3 ¬ i ∈ ℝ
2 recexre 8533 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
32adantlr 477 . . . . 5 (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
4 simplll 533 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ)
54recnd 7984 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
6 simprl 529 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ)
76recnd 7984 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
8 ax-icn 7905 . . . . . . . . 9 i ∈ ℂ
9 mulass 7941 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
108, 9mp3an1 1324 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
115, 7, 10syl2anc 411 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥)))
12 oveq2 5882 . . . . . . . . 9 ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1))
138mulid1i 7958 . . . . . . . . 9 (i · 1) = i
1412, 13eqtrdi 2226 . . . . . . . 8 ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i)
1514ad2antll 491 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i)
1611, 15eqtrd 2210 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i)
17 simpllr 534 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ)
1817, 6remulcld 7986 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ)
1916, 18eqeltrrd 2255 . . . . 5 ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ)
203, 19rexlimddv 2599 . . . 4 (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 # 0) → i ∈ ℝ)
2120ex 115 . . 3 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 # 0 → i ∈ ℝ))
221, 21mtoi 664 . 2 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 # 0)
23 0re 7956 . . . 4 0 ∈ ℝ
24 reapti 8534 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2523, 24mpan2 425 . . 3 (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2625adantr 276 . 2 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 # 0))
2722, 26mpbird 167 1 ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4003  (class class class)co 5874  cc 7808  cr 7809  0cc0 7810  1c1 7811  ici 7812   · cmul 7815   # creap 8529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-sub 8128  df-neg 8129  df-reap 8530
This theorem is referenced by:  rereim  8541  cru  8557  cju  8916  crre  10861
  Copyright terms: Public domain W3C validator