Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rimul | GIF version |
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
rimul | ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelr 8503 | . . 3 ⊢ ¬ i ∈ ℝ | |
2 | recexre 8497 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | 2 | adantlr 474 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
4 | simplll 528 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 7948 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
6 | simprl 526 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
7 | 6 | recnd 7948 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
8 | ax-icn 7869 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
9 | mulass 7905 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) | |
10 | 8, 9 | mp3an1 1319 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
11 | 5, 7, 10 | syl2anc 409 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
12 | oveq2 5861 | . . . . . . . . 9 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1)) | |
13 | 8 | mulid1i 7922 | . . . . . . . . 9 ⊢ (i · 1) = i |
14 | 12, 13 | eqtrdi 2219 | . . . . . . . 8 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i) |
15 | 14 | ad2antll 488 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i) |
16 | 11, 15 | eqtrd 2203 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i) |
17 | simpllr 529 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ) | |
18 | 17, 6 | remulcld 7950 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ) |
19 | 16, 18 | eqeltrrd 2248 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ) |
20 | 3, 19 | rexlimddv 2592 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → i ∈ ℝ) |
21 | 20 | ex 114 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 #ℝ 0 → i ∈ ℝ)) |
22 | 1, 21 | mtoi 659 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 #ℝ 0) |
23 | 0re 7920 | . . . 4 ⊢ 0 ∈ ℝ | |
24 | reapti 8498 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) | |
25 | 23, 24 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
26 | 25 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
27 | 22, 26 | mpbird 166 | 1 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 ici 7776 · cmul 7779 #ℝ creap 8493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 df-reap 8494 |
This theorem is referenced by: rereim 8505 cru 8521 cju 8877 crre 10821 |
Copyright terms: Public domain | W3C validator |