| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rimul | GIF version | ||
| Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| rimul | ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inelr 8727 | . . 3 ⊢ ¬ i ∈ ℝ | |
| 2 | recexre 8721 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
| 3 | 2 | adantlr 477 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
| 4 | simplll 533 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
| 5 | 4 | recnd 8171 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
| 6 | simprl 529 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
| 7 | 6 | recnd 8171 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
| 8 | ax-icn 8090 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 9 | mulass 8126 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) | |
| 10 | 8, 9 | mp3an1 1358 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
| 11 | 5, 7, 10 | syl2anc 411 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
| 12 | oveq2 6008 | . . . . . . . . 9 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1)) | |
| 13 | 8 | mulridi 8144 | . . . . . . . . 9 ⊢ (i · 1) = i |
| 14 | 12, 13 | eqtrdi 2278 | . . . . . . . 8 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i) |
| 15 | 14 | ad2antll 491 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i) |
| 16 | 11, 15 | eqtrd 2262 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i) |
| 17 | simpllr 534 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ) | |
| 18 | 17, 6 | remulcld 8173 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ) |
| 19 | 16, 18 | eqeltrrd 2307 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ) |
| 20 | 3, 19 | rexlimddv 2653 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → i ∈ ℝ) |
| 21 | 20 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 #ℝ 0 → i ∈ ℝ)) |
| 22 | 1, 21 | mtoi 668 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 #ℝ 0) |
| 23 | 0re 8142 | . . . 4 ⊢ 0 ∈ ℝ | |
| 24 | reapti 8722 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) | |
| 25 | 23, 24 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
| 26 | 25 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
| 27 | 22, 26 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 1c1 7996 ici 7997 · cmul 8000 #ℝ creap 8717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-sub 8315 df-neg 8316 df-reap 8718 |
| This theorem is referenced by: rereim 8729 cru 8745 cju 9104 crre 11363 |
| Copyright terms: Public domain | W3C validator |