Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rimul | GIF version |
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
rimul | ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inelr 8459 | . . 3 ⊢ ¬ i ∈ ℝ | |
2 | recexre 8453 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
3 | 2 | adantlr 469 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
4 | simplll 523 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 7906 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
6 | simprl 521 | . . . . . . . . 9 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℝ) | |
7 | 6 | recnd 7906 | . . . . . . . 8 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → 𝑥 ∈ ℂ) |
8 | ax-icn 7827 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
9 | mulass 7863 | . . . . . . . . 9 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) | |
10 | 8, 9 | mp3an1 1306 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
11 | 5, 7, 10 | syl2anc 409 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = (i · (𝐴 · 𝑥))) |
12 | oveq2 5832 | . . . . . . . . 9 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = (i · 1)) | |
13 | 8 | mulid1i 7880 | . . . . . . . . 9 ⊢ (i · 1) = i |
14 | 12, 13 | eqtrdi 2206 | . . . . . . . 8 ⊢ ((𝐴 · 𝑥) = 1 → (i · (𝐴 · 𝑥)) = i) |
15 | 14 | ad2antll 483 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · (𝐴 · 𝑥)) = i) |
16 | 11, 15 | eqtrd 2190 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) = i) |
17 | simpllr 524 | . . . . . . 7 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → (i · 𝐴) ∈ ℝ) | |
18 | 17, 6 | remulcld 7908 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → ((i · 𝐴) · 𝑥) ∈ ℝ) |
19 | 16, 18 | eqeltrrd 2235 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) ∧ (𝑥 ∈ ℝ ∧ (𝐴 · 𝑥) = 1)) → i ∈ ℝ) |
20 | 3, 19 | rexlimddv 2579 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) ∧ 𝐴 #ℝ 0) → i ∈ ℝ) |
21 | 20 | ex 114 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 #ℝ 0 → i ∈ ℝ)) |
22 | 1, 21 | mtoi 654 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → ¬ 𝐴 #ℝ 0) |
23 | 0re 7878 | . . . 4 ⊢ 0 ∈ ℝ | |
24 | reapti 8454 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) | |
25 | 23, 24 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
26 | 25 | adantr 274 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → (𝐴 = 0 ↔ ¬ 𝐴 #ℝ 0)) |
27 | 22, 26 | mpbird 166 | 1 ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 class class class wbr 3965 (class class class)co 5824 ℂcc 7730 ℝcr 7731 0cc0 7732 1c1 7733 ici 7734 · cmul 7737 #ℝ creap 8449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-iota 5135 df-fun 5172 df-fv 5178 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-pnf 7914 df-mnf 7915 df-ltxr 7917 df-sub 8048 df-neg 8049 df-reap 8450 |
This theorem is referenced by: rereim 8461 cru 8477 cju 8832 crre 10757 |
Copyright terms: Public domain | W3C validator |