![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul12 | GIF version |
Description: Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.) |
Ref | Expression |
---|---|
mul12 | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcom 7942 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) | |
2 | 1 | oveq1d 5892 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ต ยท ๐ด) ยท ๐ถ)) |
3 | 2 | 3adant3 1017 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = ((๐ต ยท ๐ด) ยท ๐ถ)) |
4 | mulass 7944 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ด ยท ๐ต) ยท ๐ถ) = (๐ด ยท (๐ต ยท ๐ถ))) | |
5 | mulass 7944 | . . 3 โข ((๐ต โ โ โง ๐ด โ โ โง ๐ถ โ โ) โ ((๐ต ยท ๐ด) ยท ๐ถ) = (๐ต ยท (๐ด ยท ๐ถ))) | |
6 | 5 | 3com12 1207 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ ((๐ต ยท ๐ด) ยท ๐ถ) = (๐ต ยท (๐ด ยท ๐ถ))) |
7 | 3, 4, 6 | 3eqtr3d 2218 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โง w3a 978 = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 ยท cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-mulcom 7914 ax-mulass 7916 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: mul12i 8105 mul12d 8111 mulreap 10875 demoivre 11782 demoivreALT 11783 dvdscmul 11827 dvdstr 11837 sinperlem 14314 coskpi 14354 |
Copyright terms: Public domain | W3C validator |