| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8138 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 · cmul 8012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: ltmul1 8747 recexap 8808 mulap0 8809 mulcanapd 8816 receuap 8824 divmulasscomap 8851 divdivdivap 8868 divmuleqap 8872 conjmulap 8884 apmul1 8943 qapne 9842 modqmul1 10607 modqdi 10622 expadd 10811 mulbinom2 10886 binom3 10887 faclbnd 10971 faclbnd6 10974 bcm1k 10990 bcp1nk 10992 bcval5 10993 crre 11376 remullem 11390 resqrexlemcalc1 11533 resqrexlemnm 11537 amgm2 11637 binomlem 12002 geo2sum 12033 mertenslemi1 12054 clim2prod 12058 sinadd 12255 tanaddap 12258 dvdsmulcr 12340 dvdsmulgcd 12554 qredeq 12626 2sqpwodd 12706 pcaddlem 12870 prmpwdvds 12886 dvexp 15393 dvply1 15447 tangtx 15520 cxpmul 15594 binom4 15661 perfectlem1 15681 perfectlem2 15682 perfect 15683 lgsneg 15711 gausslemma2dlem6 15754 lgseisenlem1 15757 lgseisenlem2 15758 lgseisenlem3 15759 lgseisenlem4 15760 lgsquad2lem1 15768 lgsquad3 15771 2lgslem3a 15780 2lgslem3b 15781 2lgslem3c 15782 2lgslem3d 15783 2lgsoddprmlem2 15793 2sqlem3 15804 |
| Copyright terms: Public domain | W3C validator |