| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8063 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 · cmul 7937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ltmul1 8672 recexap 8733 mulap0 8734 mulcanapd 8741 receuap 8749 divmulasscomap 8776 divdivdivap 8793 divmuleqap 8797 conjmulap 8809 apmul1 8868 qapne 9767 modqmul1 10529 modqdi 10544 expadd 10733 mulbinom2 10808 binom3 10809 faclbnd 10893 faclbnd6 10896 bcm1k 10912 bcp1nk 10914 bcval5 10915 crre 11212 remullem 11226 resqrexlemcalc1 11369 resqrexlemnm 11373 amgm2 11473 binomlem 11838 geo2sum 11869 mertenslemi1 11890 clim2prod 11894 sinadd 12091 tanaddap 12094 dvdsmulcr 12176 dvdsmulgcd 12390 qredeq 12462 2sqpwodd 12542 pcaddlem 12706 prmpwdvds 12722 dvexp 15227 dvply1 15281 tangtx 15354 cxpmul 15428 binom4 15495 perfectlem1 15515 perfectlem2 15516 perfect 15517 lgsneg 15545 gausslemma2dlem6 15588 lgseisenlem1 15591 lgseisenlem2 15592 lgseisenlem3 15593 lgseisenlem4 15594 lgsquad2lem1 15602 lgsquad3 15605 2lgslem3a 15614 2lgslem3b 15615 2lgslem3c 15616 2lgslem3d 15617 2lgsoddprmlem2 15627 2sqlem3 15638 |
| Copyright terms: Public domain | W3C validator |