![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulassd | GIF version |
Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mulass 7536 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1175 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 (class class class)co 5668 ℂcc 7411 · cmul 7418 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-mulass 7511 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: ltmul1 8132 recexap 8185 mulap0 8186 mulcanapd 8193 receuap 8201 divmulasscomap 8226 divdivdivap 8243 divmuleqap 8247 conjmulap 8259 apmul1 8318 qapne 9187 modqmul1 9847 modqdi 9862 expadd 10060 mulbinom2 10133 binom3 10134 faclbnd 10212 faclbnd6 10215 bcm1k 10231 bcp1nk 10233 ibcval5 10234 crre 10354 remullem 10368 resqrexlemcalc1 10510 resqrexlemnm 10514 amgm2 10614 binomlem 10940 geo2sum 10971 mertenslemi1 10992 sinadd 11090 tanaddap 11093 dvdsmulcr 11167 dvdsmulgcd 11355 qredeq 11419 2sqpwodd 11495 |
Copyright terms: Public domain | W3C validator |