| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8029 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 8001 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ltmul1 8638 recexap 8699 mulap0 8700 mulcanapd 8707 receuap 8715 divmulasscomap 8742 divdivdivap 8759 divmuleqap 8763 conjmulap 8775 apmul1 8834 qapne 9732 modqmul1 10488 modqdi 10503 expadd 10692 mulbinom2 10767 binom3 10768 faclbnd 10852 faclbnd6 10855 bcm1k 10871 bcp1nk 10873 bcval5 10874 crre 11041 remullem 11055 resqrexlemcalc1 11198 resqrexlemnm 11202 amgm2 11302 binomlem 11667 geo2sum 11698 mertenslemi1 11719 clim2prod 11723 sinadd 11920 tanaddap 11923 dvdsmulcr 12005 dvdsmulgcd 12219 qredeq 12291 2sqpwodd 12371 pcaddlem 12535 prmpwdvds 12551 dvexp 15055 dvply1 15109 tangtx 15182 cxpmul 15256 binom4 15323 perfectlem1 15343 perfectlem2 15344 perfect 15345 lgsneg 15373 gausslemma2dlem6 15416 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgseisenlem4 15422 lgsquad2lem1 15430 lgsquad3 15433 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgsoddprmlem2 15455 2sqlem3 15466 |
| Copyright terms: Public domain | W3C validator |