| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8027 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 · cmul 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 7999 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ltmul1 8636 recexap 8697 mulap0 8698 mulcanapd 8705 receuap 8713 divmulasscomap 8740 divdivdivap 8757 divmuleqap 8761 conjmulap 8773 apmul1 8832 qapne 9730 modqmul1 10486 modqdi 10501 expadd 10690 mulbinom2 10765 binom3 10766 faclbnd 10850 faclbnd6 10853 bcm1k 10869 bcp1nk 10871 bcval5 10872 crre 11039 remullem 11053 resqrexlemcalc1 11196 resqrexlemnm 11200 amgm2 11300 binomlem 11665 geo2sum 11696 mertenslemi1 11717 clim2prod 11721 sinadd 11918 tanaddap 11921 dvdsmulcr 12003 dvdsmulgcd 12217 qredeq 12289 2sqpwodd 12369 pcaddlem 12533 prmpwdvds 12549 dvexp 15031 dvply1 15085 tangtx 15158 cxpmul 15232 binom4 15299 perfectlem1 15319 perfectlem2 15320 perfect 15321 lgsneg 15349 gausslemma2dlem6 15392 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgseisenlem4 15398 lgsquad2lem1 15406 lgsquad3 15409 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgsoddprmlem2 15431 2sqlem3 15442 |
| Copyright terms: Public domain | W3C validator |