ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassd GIF version

Theorem mulassd 7922
Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
addcld.2 (𝜑𝐵 ∈ ℂ)
addassd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
mulassd (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem mulassd
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addassd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 mulass 7884 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
51, 2, 3, 4syl3anc 1228 1 (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-mulass 7856
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  ltmul1  8490  recexap  8550  mulap0  8551  mulcanapd  8558  receuap  8566  divmulasscomap  8592  divdivdivap  8609  divmuleqap  8613  conjmulap  8625  apmul1  8684  qapne  9577  modqmul1  10312  modqdi  10327  expadd  10497  mulbinom2  10571  binom3  10572  faclbnd  10654  faclbnd6  10657  bcm1k  10673  bcp1nk  10675  bcval5  10676  crre  10799  remullem  10813  resqrexlemcalc1  10956  resqrexlemnm  10960  amgm2  11060  binomlem  11424  geo2sum  11455  mertenslemi1  11476  clim2prod  11480  sinadd  11677  tanaddap  11680  dvdsmulcr  11761  dvdsmulgcd  11958  qredeq  12028  2sqpwodd  12108  pcaddlem  12270  prmpwdvds  12285  dvexp  13315  tangtx  13399  cxpmul  13473  binom4  13537  lgsneg  13565  2sqlem3  13593
  Copyright terms: Public domain W3C validator