Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulassd | GIF version |
Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mulass 7884 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1228 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 · cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-mulass 7856 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ltmul1 8490 recexap 8550 mulap0 8551 mulcanapd 8558 receuap 8566 divmulasscomap 8592 divdivdivap 8609 divmuleqap 8613 conjmulap 8625 apmul1 8684 qapne 9577 modqmul1 10312 modqdi 10327 expadd 10497 mulbinom2 10571 binom3 10572 faclbnd 10654 faclbnd6 10657 bcm1k 10673 bcp1nk 10675 bcval5 10676 crre 10799 remullem 10813 resqrexlemcalc1 10956 resqrexlemnm 10960 amgm2 11060 binomlem 11424 geo2sum 11455 mertenslemi1 11476 clim2prod 11480 sinadd 11677 tanaddap 11680 dvdsmulcr 11761 dvdsmulgcd 11958 qredeq 12028 2sqpwodd 12108 pcaddlem 12270 prmpwdvds 12285 dvexp 13315 tangtx 13399 cxpmul 13473 binom4 13537 lgsneg 13565 2sqlem3 13593 |
Copyright terms: Public domain | W3C validator |