| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8010 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 · cmul 7884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 7982 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ltmul1 8619 recexap 8680 mulap0 8681 mulcanapd 8688 receuap 8696 divmulasscomap 8723 divdivdivap 8740 divmuleqap 8744 conjmulap 8756 apmul1 8815 qapne 9713 modqmul1 10469 modqdi 10484 expadd 10673 mulbinom2 10748 binom3 10749 faclbnd 10833 faclbnd6 10836 bcm1k 10852 bcp1nk 10854 bcval5 10855 crre 11022 remullem 11036 resqrexlemcalc1 11179 resqrexlemnm 11183 amgm2 11283 binomlem 11648 geo2sum 11679 mertenslemi1 11700 clim2prod 11704 sinadd 11901 tanaddap 11904 dvdsmulcr 11986 dvdsmulgcd 12192 qredeq 12264 2sqpwodd 12344 pcaddlem 12508 prmpwdvds 12524 dvexp 14947 dvply1 15001 tangtx 15074 cxpmul 15148 binom4 15215 perfectlem1 15235 perfectlem2 15236 perfect 15237 lgsneg 15265 gausslemma2dlem6 15308 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgseisenlem4 15314 lgsquad2lem1 15322 lgsquad3 15325 2lgslem3a 15334 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 2lgsoddprmlem2 15347 2sqlem3 15358 | 
| Copyright terms: Public domain | W3C validator |