| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulassd | GIF version | ||
| Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | mulass 8098 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1252 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 · cmul 7972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 8070 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: ltmul1 8707 recexap 8768 mulap0 8769 mulcanapd 8776 receuap 8784 divmulasscomap 8811 divdivdivap 8828 divmuleqap 8832 conjmulap 8844 apmul1 8903 qapne 9802 modqmul1 10566 modqdi 10581 expadd 10770 mulbinom2 10845 binom3 10846 faclbnd 10930 faclbnd6 10933 bcm1k 10949 bcp1nk 10951 bcval5 10952 crre 11334 remullem 11348 resqrexlemcalc1 11491 resqrexlemnm 11495 amgm2 11595 binomlem 11960 geo2sum 11991 mertenslemi1 12012 clim2prod 12016 sinadd 12213 tanaddap 12216 dvdsmulcr 12298 dvdsmulgcd 12512 qredeq 12584 2sqpwodd 12664 pcaddlem 12828 prmpwdvds 12844 dvexp 15350 dvply1 15404 tangtx 15477 cxpmul 15551 binom4 15618 perfectlem1 15638 perfectlem2 15639 perfect 15640 lgsneg 15668 gausslemma2dlem6 15711 lgseisenlem1 15714 lgseisenlem2 15715 lgseisenlem3 15716 lgseisenlem4 15717 lgsquad2lem1 15725 lgsquad3 15728 2lgslem3a 15737 2lgslem3b 15738 2lgslem3c 15739 2lgslem3d 15740 2lgsoddprmlem2 15750 2sqlem3 15761 |
| Copyright terms: Public domain | W3C validator |