![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulassd | GIF version |
Description: Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
mulassd | ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | mulass 8003 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-mulass 7975 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ltmul1 8611 recexap 8672 mulap0 8673 mulcanapd 8680 receuap 8688 divmulasscomap 8715 divdivdivap 8732 divmuleqap 8736 conjmulap 8748 apmul1 8807 qapne 9704 modqmul1 10448 modqdi 10463 expadd 10652 mulbinom2 10727 binom3 10728 faclbnd 10812 faclbnd6 10815 bcm1k 10831 bcp1nk 10833 bcval5 10834 crre 11001 remullem 11015 resqrexlemcalc1 11158 resqrexlemnm 11162 amgm2 11262 binomlem 11626 geo2sum 11657 mertenslemi1 11678 clim2prod 11682 sinadd 11879 tanaddap 11882 dvdsmulcr 11964 dvdsmulgcd 12162 qredeq 12234 2sqpwodd 12314 pcaddlem 12477 prmpwdvds 12493 dvexp 14860 tangtx 14973 cxpmul 15047 binom4 15111 lgsneg 15140 gausslemma2dlem6 15183 lgseisenlem1 15186 lgseisenlem2 15187 lgseisenlem3 15188 lgseisenlem4 15189 2lgsoddprmlem2 15194 2sqlem3 15204 |
Copyright terms: Public domain | W3C validator |