ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2divap GIF version

Theorem clim2divap 11503
Description: The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
clim2div.1 𝑍 = (ℤ𝑀)
clim2div.2 (𝜑𝑁𝑍)
clim2div.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2div.4 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
clim2divap.5 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
Assertion
Ref Expression
clim2divap (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem clim2divap
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . 3 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2div.2 . . . . 5 (𝜑𝑁𝑍)
3 eluzelz 9496 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 clim2div.1 . . . . . 6 𝑍 = (ℤ𝑀)
53, 4eleq2s 2265 . . . . 5 (𝑁𝑍𝑁 ∈ ℤ)
62, 5syl 14 . . . 4 (𝜑𝑁 ∈ ℤ)
76peano2zd 9337 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
8 clim2div.4 . . 3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴)
9 eluzel2 9492 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
109, 4eleq2s 2265 . . . . . . 7 (𝑁𝑍𝑀 ∈ ℤ)
112, 10syl 14 . . . . . 6 (𝜑𝑀 ∈ ℤ)
12 clim2div.3 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
134, 11, 12prodf 11501 . . . . 5 (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ)
1413, 2ffvelrnd 5632 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
15 clim2divap.5 . . . 4 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0)
1614, 15recclapd 8698 . . 3 (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ)
17 seqex 10403 . . . 4 seq(𝑁 + 1)( · , 𝐹) ∈ V
1817a1i 9 . . 3 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V)
192, 4eleqtrdi 2263 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
20 peano2uz 9542 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
2119, 20syl 14 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
2221, 4eleqtrrdi 2264 . . . . 5 (𝜑 → (𝑁 + 1) ∈ 𝑍)
234uztrn2 9504 . . . . 5 (((𝑁 + 1) ∈ 𝑍𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2422, 23sylan 281 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗𝑍)
2513ffvelrnda 5631 . . . 4 ((𝜑𝑗𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
2624, 25syldan 280 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ)
27 mulcl 7901 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
2827adantl 275 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
29 mulass 7905 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
3029adantl 275 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦)))
31 simpr 109 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
3219adantr 274 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
334eleq2i 2237 . . . . . . . . 9 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3433, 12sylan2br 286 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3534adantlr 474 . . . . . . 7 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3628, 30, 31, 32, 35seq3split 10435 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)))
3736eqcomd 2176 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))
3814adantr 274 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
394uztrn2 9504 . . . . . . . . . 10 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4022, 39sylan 281 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
4140, 12syldan 280 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
421, 7, 41prodf 11501 . . . . . . 7 (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
4342ffvelrnda 5631 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ)
4415adantr 274 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) # 0)
4526, 38, 43, 44divmulapd 8729 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)))
4637, 45mpbird 166 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗))
4726, 38, 44divrecap2d 8711 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
4846, 47eqtr3d 2205 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗)))
491, 7, 8, 16, 18, 26, 48climmulc2 11294 . 2 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
50 climcl 11245 . . . 4 (seq𝑀( · , 𝐹) ⇝ 𝐴𝐴 ∈ ℂ)
518, 50syl 14 . . 3 (𝜑𝐴 ∈ ℂ)
5251, 14, 15divrecap2d 8711 . 2 (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴))
5349, 52breqtrrd 4017 1 (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   # cap 8500   / cdiv 8589  cz 9212  cuz 9487  seqcseq 10401  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-fz 9966  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator