| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqid 2196 | 
. . 3
⊢
(ℤ≥‘(𝑁 + 1)) =
(ℤ≥‘(𝑁 + 1)) | 
| 2 |   | clim2div.2 | 
. . . . 5
⊢ (𝜑 → 𝑁 ∈ 𝑍) | 
| 3 |   | eluzelz 9610 | 
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | 
| 4 |   | clim2div.1 | 
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 5 | 3, 4 | eleq2s 2291 | 
. . . . 5
⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) | 
| 6 | 2, 5 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 7 | 6 | peano2zd 9451 | 
. . 3
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 8 |   | clim2div.4 | 
. . 3
⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝐴) | 
| 9 |   | eluzel2 9606 | 
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 10 | 9, 4 | eleq2s 2291 | 
. . . . . . 7
⊢ (𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ) | 
| 11 | 2, 10 | syl 14 | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 12 |   | clim2div.3 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 13 | 4, 11, 12 | prodf 11703 | 
. . . . 5
⊢ (𝜑 → seq𝑀( · , 𝐹):𝑍⟶ℂ) | 
| 14 | 13, 2 | ffvelcdmd 5698 | 
. . . 4
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) | 
| 15 |   | clim2divap.5 | 
. . . 4
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) # 0) | 
| 16 | 14, 15 | recclapd 8808 | 
. . 3
⊢ (𝜑 → (1 / (seq𝑀( · , 𝐹)‘𝑁)) ∈ ℂ) | 
| 17 |   | seqex 10541 | 
. . . 4
⊢ seq(𝑁 + 1)( · , 𝐹) ∈ V | 
| 18 | 17 | a1i 9 | 
. . 3
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ∈ V) | 
| 19 | 2, 4 | eleqtrdi 2289 | 
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 20 |   | peano2uz 9657 | 
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) | 
| 21 | 19, 20 | syl 14 | 
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘𝑀)) | 
| 22 | 21, 4 | eleqtrrdi 2290 | 
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) | 
| 23 | 4 | uztrn2 9619 | 
. . . . 5
⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ 𝑍) | 
| 24 | 22, 23 | sylan 283 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ 𝑍) | 
| 25 | 13 | ffvelcdmda 5697 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ) | 
| 26 | 24, 25 | syldan 282 | 
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) ∈ ℂ) | 
| 27 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ) | 
| 28 | 27 | adantl 277 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ) | 
| 29 |   | mulass 8010 | 
. . . . . . . 8
⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦))) | 
| 30 | 29 | adantl 277 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 · 𝑥) · 𝑦) = (𝑘 · (𝑥 · 𝑦))) | 
| 31 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈
(ℤ≥‘(𝑁 + 1))) | 
| 32 | 19 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 33 | 4 | eleq2i 2263 | 
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 34 | 33, 12 | sylan2br 288 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) | 
| 35 | 34 | adantlr 477 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) | 
| 36 | 28, 30, 31, 32, 35 | seq3split 10580 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑗) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗))) | 
| 37 | 36 | eqcomd 2202 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗)) | 
| 38 | 14 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ) | 
| 39 | 4 | uztrn2 9619 | 
. . . . . . . . . 10
⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) | 
| 40 | 22, 39 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) | 
| 41 | 40, 12 | syldan 282 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) | 
| 42 | 1, 7, 41 | prodf 11703 | 
. . . . . . 7
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹):(ℤ≥‘(𝑁 +
1))⟶ℂ) | 
| 43 | 42 | ffvelcdmda 5697 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ∈ ℂ) | 
| 44 | 15 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( · , 𝐹)‘𝑁) # 0) | 
| 45 | 26, 38, 43, 44 | divmulapd 8839 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗) ↔ ((seq𝑀( · , 𝐹)‘𝑁) · (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) = (seq𝑀( · , 𝐹)‘𝑗))) | 
| 46 | 37, 45 | mpbird 167 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( · , 𝐹)‘𝑗)) | 
| 47 | 26, 38, 44 | divrecap2d 8821 | 
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( · , 𝐹)‘𝑗) / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗))) | 
| 48 | 46, 47 | eqtr3d 2231 | 
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( · , 𝐹)‘𝑗) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · (seq𝑀( · , 𝐹)‘𝑗))) | 
| 49 | 1, 7, 8, 16, 18, 26, 48 | climmulc2 11496 | 
. 2
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴)) | 
| 50 |   | climcl 11447 | 
. . . 4
⊢ (seq𝑀( · , 𝐹) ⇝ 𝐴 → 𝐴 ∈ ℂ) | 
| 51 | 8, 50 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 52 | 51, 14, 15 | divrecap2d 8821 | 
. 2
⊢ (𝜑 → (𝐴 / (seq𝑀( · , 𝐹)‘𝑁)) = ((1 / (seq𝑀( · , 𝐹)‘𝑁)) · 𝐴)) | 
| 53 | 49, 52 | breqtrrd 4061 | 
1
⊢ (𝜑 → seq(𝑁 + 1)( · , 𝐹) ⇝ (𝐴 / (seq𝑀( · , 𝐹)‘𝑁))) |