![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfz2 | GIF version |
Description: Alternate definition of the integers, based on elz2 9355. (Contributed by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
dfz2 | ⊢ ℤ = ( − “ (ℕ × ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz2 9355 | . . 3 ⊢ (𝑥 ∈ ℤ ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ 𝑥 = (𝑦 − 𝑧)) | |
2 | subf 8190 | . . . . 5 ⊢ − :(ℂ × ℂ)⟶ℂ | |
3 | ffn 5384 | . . . . 5 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ − Fn (ℂ × ℂ) |
5 | nnsscn 8955 | . . . . 5 ⊢ ℕ ⊆ ℂ | |
6 | xpss12 4751 | . . . . 5 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
7 | 5, 5, 6 | mp2an 426 | . . . 4 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
8 | ovelimab 6048 | . . . 4 ⊢ (( − Fn (ℂ × ℂ) ∧ (ℕ × ℕ) ⊆ (ℂ × ℂ)) → (𝑥 ∈ ( − “ (ℕ × ℕ)) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ 𝑥 = (𝑦 − 𝑧))) | |
9 | 4, 7, 8 | mp2an 426 | . . 3 ⊢ (𝑥 ∈ ( − “ (ℕ × ℕ)) ↔ ∃𝑦 ∈ ℕ ∃𝑧 ∈ ℕ 𝑥 = (𝑦 − 𝑧)) |
10 | 1, 9 | bitr4i 187 | . 2 ⊢ (𝑥 ∈ ℤ ↔ 𝑥 ∈ ( − “ (ℕ × ℕ))) |
11 | 10 | eqriv 2186 | 1 ⊢ ℤ = ( − “ (ℕ × ℕ)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 ⊆ wss 3144 × cxp 4642 “ cima 4647 Fn wfn 5230 ⟶wf 5231 (class class class)co 5897 ℂcc 7840 − cmin 8159 ℕcn 8950 ℤcz 9284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-n0 9208 df-z 9285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |