Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nncn | GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 8862 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | 1 | sseli 3138 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7751 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-inn 8858 |
This theorem is referenced by: nn1m1nn 8875 nn1suc 8876 nnaddcl 8877 nnmulcl 8878 nnsub 8896 nndiv 8898 nndivtr 8899 nnnn0addcl 9144 nn0nnaddcl 9145 elnnnn0 9157 nnnegz 9194 zaddcllempos 9228 zaddcllemneg 9230 nnaddm1cl 9252 elz2 9262 zdiv 9279 zdivadd 9280 zdivmul 9281 nneoor 9293 nneo 9294 divfnzn 9559 qmulz 9561 qaddcl 9573 qnegcl 9574 qmulcl 9575 qreccl 9580 nnledivrp 9702 nn0ledivnn 9703 fseq1m1p1 10030 nnsplit 10072 ubmelm1fzo 10161 subfzo0 10177 flqdiv 10256 addmodidr 10308 modfzo0difsn 10330 nn0ennn 10368 expnegap0 10463 expm1t 10483 nnsqcl 10524 nnlesq 10558 facdiv 10651 facndiv 10652 faclbnd 10654 bcn1 10671 bcn2m1 10682 arisum 11439 arisum2 11440 expcnvap0 11443 mertenslem2 11477 ef0lem 11601 efexp 11623 nndivides 11737 modmulconst 11763 dvdsflip 11789 nn0enne 11839 nno 11843 divalgmod 11864 ndvdsadd 11868 modgcd 11924 gcddiv 11952 gcdmultiple 11953 gcdmultiplez 11954 rpmulgcd 11959 rplpwr 11960 sqgcd 11962 lcmgcdlem 12009 qredeq 12028 qredeu 12029 divgcdcoprm0 12033 cncongrcoprm 12038 prmind2 12052 isprm6 12079 sqrt2irr 12094 oddpwdclemodd 12104 divnumden 12128 divdenle 12129 nn0gcdsq 12132 hashgcdlem 12170 pythagtriplem1 12197 pythagtriplem2 12198 pythagtriplem6 12202 pythagtriplem7 12203 pythagtriplem12 12207 pythagtriplem14 12209 pythagtriplem15 12210 pythagtriplem16 12211 pythagtriplem17 12212 pythagtriplem19 12214 pcqcl 12238 pcexp 12241 pcneg 12256 fldivp1 12278 oddprmdvds 12284 prmpwdvds 12285 infpnlem2 12290 dvexp 13315 rpcxproot 13474 logbgcd1irr 13525 lgssq2 13582 2sqlem6 13596 2sqlem10 13601 |
Copyright terms: Public domain | W3C validator |