Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nncn | GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 8870 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7759 ℕcn 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4105 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3830 df-inn 8866 |
This theorem is referenced by: nn1m1nn 8883 nn1suc 8884 nnaddcl 8885 nnmulcl 8886 nnsub 8904 nndiv 8906 nndivtr 8907 nnnn0addcl 9152 nn0nnaddcl 9153 elnnnn0 9165 nnnegz 9202 zaddcllempos 9236 zaddcllemneg 9238 nnaddm1cl 9260 elz2 9270 zdiv 9287 zdivadd 9288 zdivmul 9289 nneoor 9301 nneo 9302 divfnzn 9567 qmulz 9569 qaddcl 9581 qnegcl 9582 qmulcl 9583 qreccl 9588 nnledivrp 9710 nn0ledivnn 9711 fseq1m1p1 10038 nnsplit 10080 ubmelm1fzo 10169 subfzo0 10185 flqdiv 10264 addmodidr 10316 modfzo0difsn 10338 nn0ennn 10376 expnegap0 10471 expm1t 10491 nnsqcl 10532 nnlesq 10566 facdiv 10659 facndiv 10660 faclbnd 10662 bcn1 10679 bcn2m1 10690 arisum 11448 arisum2 11449 expcnvap0 11452 mertenslem2 11486 ef0lem 11610 efexp 11632 nndivides 11746 modmulconst 11772 dvdsflip 11798 nn0enne 11848 nno 11852 divalgmod 11873 ndvdsadd 11877 modgcd 11933 gcddiv 11961 gcdmultiple 11962 gcdmultiplez 11963 rpmulgcd 11968 rplpwr 11969 sqgcd 11971 lcmgcdlem 12018 qredeq 12037 qredeu 12038 divgcdcoprm0 12042 cncongrcoprm 12047 prmind2 12061 isprm6 12088 sqrt2irr 12103 oddpwdclemodd 12113 divnumden 12137 divdenle 12138 nn0gcdsq 12141 hashgcdlem 12179 pythagtriplem1 12206 pythagtriplem2 12207 pythagtriplem6 12211 pythagtriplem7 12212 pythagtriplem12 12216 pythagtriplem14 12218 pythagtriplem15 12219 pythagtriplem16 12220 pythagtriplem17 12221 pythagtriplem19 12223 pcqcl 12247 pcexp 12250 pcneg 12265 fldivp1 12287 oddprmdvds 12293 prmpwdvds 12294 infpnlem2 12299 dvexp 13390 rpcxproot 13549 logbgcd1irr 13600 lgssq2 13657 2sqlem6 13671 2sqlem10 13676 |
Copyright terms: Public domain | W3C validator |