Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nncn | GIF version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 8883 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℂcc 7772 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3832 df-inn 8879 |
This theorem is referenced by: nn1m1nn 8896 nn1suc 8897 nnaddcl 8898 nnmulcl 8899 nnsub 8917 nndiv 8919 nndivtr 8920 nnnn0addcl 9165 nn0nnaddcl 9166 elnnnn0 9178 nnnegz 9215 zaddcllempos 9249 zaddcllemneg 9251 nnaddm1cl 9273 elz2 9283 zdiv 9300 zdivadd 9301 zdivmul 9302 nneoor 9314 nneo 9315 divfnzn 9580 qmulz 9582 qaddcl 9594 qnegcl 9595 qmulcl 9596 qreccl 9601 nnledivrp 9723 nn0ledivnn 9724 fseq1m1p1 10051 nnsplit 10093 ubmelm1fzo 10182 subfzo0 10198 flqdiv 10277 addmodidr 10329 modfzo0difsn 10351 nn0ennn 10389 expnegap0 10484 expm1t 10504 nnsqcl 10545 nnlesq 10579 facdiv 10672 facndiv 10673 faclbnd 10675 bcn1 10692 bcn2m1 10703 arisum 11461 arisum2 11462 expcnvap0 11465 mertenslem2 11499 ef0lem 11623 efexp 11645 nndivides 11759 modmulconst 11785 dvdsflip 11811 nn0enne 11861 nno 11865 divalgmod 11886 ndvdsadd 11890 modgcd 11946 gcddiv 11974 gcdmultiple 11975 gcdmultiplez 11976 rpmulgcd 11981 rplpwr 11982 sqgcd 11984 lcmgcdlem 12031 qredeq 12050 qredeu 12051 divgcdcoprm0 12055 cncongrcoprm 12060 prmind2 12074 isprm6 12101 sqrt2irr 12116 oddpwdclemodd 12126 divnumden 12150 divdenle 12151 nn0gcdsq 12154 hashgcdlem 12192 pythagtriplem1 12219 pythagtriplem2 12220 pythagtriplem6 12224 pythagtriplem7 12225 pythagtriplem12 12229 pythagtriplem14 12231 pythagtriplem15 12232 pythagtriplem16 12233 pythagtriplem17 12234 pythagtriplem19 12236 pcqcl 12260 pcexp 12263 pcneg 12278 fldivp1 12300 oddprmdvds 12306 prmpwdvds 12307 infpnlem2 12312 dvexp 13469 rpcxproot 13628 logbgcd1irr 13679 lgssq2 13736 2sqlem6 13750 2sqlem10 13755 |
Copyright terms: Public domain | W3C validator |