| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8022 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 9014 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4172 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7896 ℕcn 9009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9010 |
| This theorem is referenced by: nn0ex 9274 nn0ennn 10544 climrecvg1n 11532 climcvg1nlem 11533 divcnv 11681 trireciplem 11684 expcnvap0 11686 expcnv 11688 geo2lim 11700 prmex 12308 qnumval 12380 qdenval 12381 oddennn 12636 evenennn 12637 xpnnen 12638 znnen 12642 qnnen 12675 ssnnctlemct 12690 nninfdc 12697 ndxarg 12728 mulgnngsum 13335 trilpo 15800 redcwlpo 15812 nconstwlpo 15823 neapmkv 15825 |
| Copyright terms: Public domain | W3C validator |