| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8079 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 9071 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4193 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 Vcvv 2773 ℂcc 7953 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4173 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-int 3895 df-inn 9067 |
| This theorem is referenced by: nn0ex 9331 nn0ennn 10610 climrecvg1n 11744 climcvg1nlem 11745 divcnv 11893 trireciplem 11896 expcnvap0 11898 expcnv 11900 geo2lim 11912 prmex 12520 qnumval 12592 qdenval 12593 oddennn 12848 evenennn 12849 xpnnen 12850 znnen 12854 qnnen 12887 ssnnctlemct 12902 nninfdc 12909 ndxarg 12940 mulgnngsum 13548 trilpo 16154 redcwlpo 16166 nconstwlpo 16177 neapmkv 16179 |
| Copyright terms: Public domain | W3C validator |