Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnex | GIF version |
Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnex | ⊢ ℕ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7873 | . 2 ⊢ ℂ ∈ V | |
2 | nnsscn 8858 | . 2 ⊢ ℕ ⊆ ℂ | |
3 | 1, 2 | ssexi 4119 | 1 ⊢ ℕ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2725 ℂcc 7747 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 df-inn 8854 |
This theorem is referenced by: nn0ex 9116 nn0ennn 10364 climrecvg1n 11285 climcvg1nlem 11286 divcnv 11434 trireciplem 11437 expcnvap0 11439 expcnv 11441 geo2lim 11453 prmex 12041 qnumval 12113 qdenval 12114 oddennn 12321 evenennn 12322 xpnnen 12323 znnen 12327 qnnen 12360 ssnnctlemct 12375 nninfdc 12382 ndxarg 12413 trilpo 13882 redcwlpo 13894 nconstwlpo 13904 neapmkv 13906 |
Copyright terms: Public domain | W3C validator |