| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8020 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 9012 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4172 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7894 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9008 |
| This theorem is referenced by: nn0ex 9272 nn0ennn 10542 climrecvg1n 11530 climcvg1nlem 11531 divcnv 11679 trireciplem 11682 expcnvap0 11684 expcnv 11686 geo2lim 11698 prmex 12306 qnumval 12378 qdenval 12379 oddennn 12634 evenennn 12635 xpnnen 12636 znnen 12640 qnnen 12673 ssnnctlemct 12688 nninfdc 12695 ndxarg 12726 mulgnngsum 13333 trilpo 15774 redcwlpo 15786 nconstwlpo 15797 neapmkv 15799 |
| Copyright terms: Public domain | W3C validator |