| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8119 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 9111 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4221 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ℂcc 7993 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3923 df-inn 9107 |
| This theorem is referenced by: nn0ex 9371 nn0ennn 10650 climrecvg1n 11854 climcvg1nlem 11855 divcnv 12003 trireciplem 12006 expcnvap0 12008 expcnv 12010 geo2lim 12022 prmex 12630 qnumval 12702 qdenval 12703 oddennn 12958 evenennn 12959 xpnnen 12960 znnen 12964 qnnen 12997 ssnnctlemct 13012 nninfdc 13019 ndxarg 13050 mulgnngsum 13659 trilpo 16370 redcwlpo 16382 nconstwlpo 16393 neapmkv 16395 |
| Copyright terms: Public domain | W3C validator |