| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8003 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 8995 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4171 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 ℂcc 7877 ℕcn 8990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-inn 8991 |
| This theorem is referenced by: nn0ex 9255 nn0ennn 10525 climrecvg1n 11513 climcvg1nlem 11514 divcnv 11662 trireciplem 11665 expcnvap0 11667 expcnv 11669 geo2lim 11681 prmex 12281 qnumval 12353 qdenval 12354 oddennn 12609 evenennn 12610 xpnnen 12611 znnen 12615 qnnen 12648 ssnnctlemct 12663 nninfdc 12670 ndxarg 12701 mulgnngsum 13257 trilpo 15687 redcwlpo 15699 nconstwlpo 15710 neapmkv 15712 |
| Copyright terms: Public domain | W3C validator |