![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnex | GIF version |
Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnex | ⊢ ℕ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7996 | . 2 ⊢ ℂ ∈ V | |
2 | nnsscn 8987 | . 2 ⊢ ℕ ⊆ ℂ | |
3 | 1, 2 | ssexi 4167 | 1 ⊢ ℕ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ℂcc 7870 ℕcn 8982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-int 3871 df-inn 8983 |
This theorem is referenced by: nn0ex 9246 nn0ennn 10504 climrecvg1n 11491 climcvg1nlem 11492 divcnv 11640 trireciplem 11643 expcnvap0 11645 expcnv 11647 geo2lim 11659 prmex 12251 qnumval 12323 qdenval 12324 oddennn 12549 evenennn 12550 xpnnen 12551 znnen 12555 qnnen 12588 ssnnctlemct 12603 nninfdc 12610 ndxarg 12641 mulgnngsum 13197 trilpo 15533 redcwlpo 15545 nconstwlpo 15556 neapmkv 15558 |
Copyright terms: Public domain | W3C validator |