| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnex | GIF version | ||
| Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| nnex | ⊢ ℕ ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8048 | . 2 ⊢ ℂ ∈ V | |
| 2 | nnsscn 9040 | . 2 ⊢ ℕ ⊆ ℂ | |
| 3 | 1, 2 | ssexi 4181 | 1 ⊢ ℕ ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ℂcc 7922 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-int 3885 df-inn 9036 |
| This theorem is referenced by: nn0ex 9300 nn0ennn 10576 climrecvg1n 11601 climcvg1nlem 11602 divcnv 11750 trireciplem 11753 expcnvap0 11755 expcnv 11757 geo2lim 11769 prmex 12377 qnumval 12449 qdenval 12450 oddennn 12705 evenennn 12706 xpnnen 12707 znnen 12711 qnnen 12744 ssnnctlemct 12759 nninfdc 12766 ndxarg 12797 mulgnngsum 13405 trilpo 15915 redcwlpo 15927 nconstwlpo 15938 neapmkv 15940 |
| Copyright terms: Public domain | W3C validator |