Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnex | GIF version |
Description: The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
nnex | ⊢ ℕ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 7839 | . 2 ⊢ ℂ ∈ V | |
2 | nnsscn 8821 | . 2 ⊢ ℕ ⊆ ℂ | |
3 | 1, 2 | ssexi 4102 | 1 ⊢ ℕ ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 Vcvv 2712 ℂcc 7713 ℕcn 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-int 3808 df-inn 8817 |
This theorem is referenced by: nn0ex 9079 nn0ennn 10314 climrecvg1n 11227 climcvg1nlem 11228 divcnv 11376 trireciplem 11379 expcnvap0 11381 expcnv 11383 geo2lim 11395 prmex 11970 qnumval 12039 qdenval 12040 oddennn 12093 evenennn 12094 xpnnen 12095 znnen 12099 qnnen 12132 ndxarg 12173 trilpo 13576 redcwlpo 13588 nconstwlpo 13598 neapmkv 13600 |
Copyright terms: Public domain | W3C validator |