ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop0 GIF version

Theorem fundm2domnop0 11062
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 13040. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundm2domnop0 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundm2domnop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2dom 6956 . . 3 (2o ≼ dom 𝐺 → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 ¬ 𝑎 = 𝑏)
2 elvv 4780 . . . . . . . 8 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
3 difeq1 3315 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
43funeqd 5339 . . . . . . . . . . . 12 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
5 opwo0id 4334 . . . . . . . . . . . . . . 15 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
65eqcomi 2233 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
76funeqi 5338 . . . . . . . . . . . . 13 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
8 dmeq 4922 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
98eleq2d 2299 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
108eleq2d 2299 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
119, 10anbi12d 473 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
12 eqid 2229 . . . . . . . . . . . . . . . . . 18 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
13 vex 2802 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
14 vex 2802 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
1512, 13, 14funopdmsn 5818 . . . . . . . . . . . . . . . . 17 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
16153expb 1228 . . . . . . . . . . . . . . . 16 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
1716expcom 116 . . . . . . . . . . . . . . 15 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
1811, 17biimtrdi 163 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
1918com23 78 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
207, 19biimtrid 152 . . . . . . . . . . . 12 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
214, 20sylbid 150 . . . . . . . . . . 11 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2221impcomd 255 . . . . . . . . . 10 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2322exlimivv 1943 . . . . . . . . 9 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2423com12 30 . . . . . . . 8 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
252, 24biimtrid 152 . . . . . . 7 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
2625con3d 634 . . . . . 6 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
2726ex 115 . . . . 5 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
2827com23 78 . . . 4 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
2928rexlimivv 2654 . . 3 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 ¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
301, 29syl 14 . 2 (2o ≼ dom 𝐺 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
3130impcom 125 1 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1395  wex 1538  wcel 2200  wrex 2509  Vcvv 2799  cdif 3194  c0 3491  {csn 3666  cop 3669   class class class wbr 4082   × cxp 4716  dom cdm 4718  Fun wfun 5311  2oc2o 6554  cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fv 5325  df-1o 6560  df-2o 6561  df-dom 6887
This theorem is referenced by:  fundm2domnop  11063  fun2dmnop0  11064  funvtxdm2domval  15824  funiedgdm2domval  15825
  Copyright terms: Public domain W3C validator