ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundm2domnop0 GIF version

Theorem fundm2domnop0 11012
Description: A function with a domain containing (at least) two different elements is not an ordered pair. This theorem (which requires that (𝐺 ∖ {∅}) needs to be a function instead of 𝐺) is useful for proofs for extensible structures, see structn0fun 12920. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 7-Jun-2021.) (Proof shortened by AV, 15-Nov-2021.)
Assertion
Ref Expression
fundm2domnop0 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))

Proof of Theorem fundm2domnop0
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2dom 6911 . . 3 (2o ≼ dom 𝐺 → ∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 ¬ 𝑎 = 𝑏)
2 elvv 4745 . . . . . . . 8 (𝐺 ∈ (V × V) ↔ ∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩)
3 difeq1 3288 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝐺 ∖ {∅}) = (⟨𝑥, 𝑦⟩ ∖ {∅}))
43funeqd 5302 . . . . . . . . . . . 12 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) ↔ Fun (⟨𝑥, 𝑦⟩ ∖ {∅})))
5 opwo0id 4301 . . . . . . . . . . . . . . 15 𝑥, 𝑦⟩ = (⟨𝑥, 𝑦⟩ ∖ {∅})
65eqcomi 2210 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∖ {∅}) = ⟨𝑥, 𝑦
76funeqi 5301 . . . . . . . . . . . . 13 (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) ↔ Fun ⟨𝑥, 𝑦⟩)
8 dmeq 4887 . . . . . . . . . . . . . . . . 17 (𝐺 = ⟨𝑥, 𝑦⟩ → dom 𝐺 = dom ⟨𝑥, 𝑦⟩)
98eleq2d 2276 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑎 ∈ dom 𝐺𝑎 ∈ dom ⟨𝑥, 𝑦⟩))
108eleq2d 2276 . . . . . . . . . . . . . . . 16 (𝐺 = ⟨𝑥, 𝑦⟩ → (𝑏 ∈ dom 𝐺𝑏 ∈ dom ⟨𝑥, 𝑦⟩))
119, 10anbi12d 473 . . . . . . . . . . . . . . 15 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ↔ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)))
12 eqid 2206 . . . . . . . . . . . . . . . . . 18 𝑥, 𝑦⟩ = ⟨𝑥, 𝑦
13 vex 2776 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
14 vex 2776 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
1512, 13, 14funopdmsn 5777 . . . . . . . . . . . . . . . . 17 ((Fun ⟨𝑥, 𝑦⟩ ∧ 𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → 𝑎 = 𝑏)
16153expb 1207 . . . . . . . . . . . . . . . 16 ((Fun ⟨𝑥, 𝑦⟩ ∧ (𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩)) → 𝑎 = 𝑏)
1716expcom 116 . . . . . . . . . . . . . . 15 ((𝑎 ∈ dom ⟨𝑥, 𝑦⟩ ∧ 𝑏 ∈ dom ⟨𝑥, 𝑦⟩) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
1811, 17biimtrdi 163 . . . . . . . . . . . . . 14 (𝐺 = ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏)))
1918com23 78 . . . . . . . . . . . . 13 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun ⟨𝑥, 𝑦⟩ → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
207, 19biimtrid 152 . . . . . . . . . . . 12 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (⟨𝑥, 𝑦⟩ ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
214, 20sylbid 150 . . . . . . . . . . 11 (𝐺 = ⟨𝑥, 𝑦⟩ → (Fun (𝐺 ∖ {∅}) → ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → 𝑎 = 𝑏)))
2221impcomd 255 . . . . . . . . . 10 (𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2322exlimivv 1921 . . . . . . . . 9 (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → 𝑎 = 𝑏))
2423com12 30 . . . . . . . 8 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (∃𝑥𝑦 𝐺 = ⟨𝑥, 𝑦⟩ → 𝑎 = 𝑏))
252, 24biimtrid 152 . . . . . . 7 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (𝐺 ∈ (V × V) → 𝑎 = 𝑏))
2625con3d 632 . . . . . 6 (((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) ∧ Fun (𝐺 ∖ {∅})) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V)))
2726ex 115 . . . . 5 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (Fun (𝐺 ∖ {∅}) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ (V × V))))
2827com23 78 . . . 4 ((𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺) → (¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V))))
2928rexlimivv 2630 . . 3 (∃𝑎 ∈ dom 𝐺𝑏 ∈ dom 𝐺 ¬ 𝑎 = 𝑏 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
301, 29syl 14 . 2 (2o ≼ dom 𝐺 → (Fun (𝐺 ∖ {∅}) → ¬ 𝐺 ∈ (V × V)))
3130impcom 125 1 ((Fun (𝐺 ∖ {∅}) ∧ 2o ≼ dom 𝐺) → ¬ 𝐺 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  cdif 3167  c0 3464  {csn 3638  cop 3641   class class class wbr 4051   × cxp 4681  dom cdm 4683  Fun wfun 5274  2oc2o 6509  cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fv 5288  df-1o 6515  df-2o 6516  df-dom 6842
This theorem is referenced by:  fundm2domnop  11013  fun2dmnop0  11014  funvtxdm2domval  15703  funiedgdm2domval  15704
  Copyright terms: Public domain W3C validator