ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss GIF version

Theorem ordsucss 4481
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4356 . 2 (Ord 𝐵 → Tr 𝐵)
2 trss 4089 . . . . 5 (Tr 𝐵 → (𝐴𝐵𝐴𝐵))
3 snssi 3717 . . . . . 6 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
43a1i 9 . . . . 5 (Tr 𝐵 → (𝐴𝐵 → {𝐴} ⊆ 𝐵))
52, 4jcad 305 . . . 4 (Tr 𝐵 → (𝐴𝐵 → (𝐴𝐵 ∧ {𝐴} ⊆ 𝐵)))
6 unss 3296 . . . 4 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
75, 6syl6ib 160 . . 3 (Tr 𝐵 → (𝐴𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵))
8 df-suc 4349 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
98sseq1i 3168 . . 3 (suc 𝐴𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
107, 9syl6ibr 161 . 2 (Tr 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
111, 10syl 14 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  cun 3114  wss 3116  {csn 3576  Tr wtr 4080  Ord word 4340  suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-iord 4344  df-suc 4349
This theorem is referenced by:  ordelsuc  4482  tfrlemibfn  6296  tfr1onlembfn  6312  tfrcllembfn  6325  sucinc2  6414  nndomo  6830  prarloclemn  7440  ennnfonelemhom  12348  ennnfonelemrn  12352
  Copyright terms: Public domain W3C validator