ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss GIF version

Theorem ordsucss 4573
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4446 . 2 (Ord 𝐵 → Tr 𝐵)
2 trss 4170 . . . . 5 (Tr 𝐵 → (𝐴𝐵𝐴𝐵))
3 snssi 3791 . . . . . 6 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
43a1i 9 . . . . 5 (Tr 𝐵 → (𝐴𝐵 → {𝐴} ⊆ 𝐵))
52, 4jcad 307 . . . 4 (Tr 𝐵 → (𝐴𝐵 → (𝐴𝐵 ∧ {𝐴} ⊆ 𝐵)))
6 unss 3358 . . . 4 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
75, 6imbitrdi 161 . . 3 (Tr 𝐵 → (𝐴𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵))
8 df-suc 4439 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
98sseq1i 3230 . . 3 (suc 𝐴𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
107, 9imbitrrdi 162 . 2 (Tr 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
111, 10syl 14 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2180  cun 3175  wss 3177  {csn 3646  Tr wtr 4161  Ord word 4430  suc csuc 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-uni 3868  df-tr 4162  df-iord 4434  df-suc 4439
This theorem is referenced by:  ordelsuc  4574  tfrlemibfn  6444  tfr1onlembfn  6460  tfrcllembfn  6473  sucinc2  6562  nndomo  6993  prarloclemn  7654  ennnfonelemhom  12952  ennnfonelemrn  12956
  Copyright terms: Public domain W3C validator