ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss GIF version

Theorem ordsucss 4311
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4196 . 2 (Ord 𝐵 → Tr 𝐵)
2 trss 3937 . . . . 5 (Tr 𝐵 → (𝐴𝐵𝐴𝐵))
3 snssi 3576 . . . . . 6 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
43a1i 9 . . . . 5 (Tr 𝐵 → (𝐴𝐵 → {𝐴} ⊆ 𝐵))
52, 4jcad 301 . . . 4 (Tr 𝐵 → (𝐴𝐵 → (𝐴𝐵 ∧ {𝐴} ⊆ 𝐵)))
6 unss 3172 . . . 4 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
75, 6syl6ib 159 . . 3 (Tr 𝐵 → (𝐴𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵))
8 df-suc 4189 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
98sseq1i 3048 . . 3 (suc 𝐴𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
107, 9syl6ibr 160 . 2 (Tr 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
111, 10syl 14 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1438  cun 2995  wss 2997  {csn 3441  Tr wtr 3928  Ord word 4180  suc csuc 4183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-uni 3649  df-tr 3929  df-iord 4184  df-suc 4189
This theorem is referenced by:  ordelsuc  4312  tfrlemibfn  6075  tfr1onlembfn  6091  tfrcllembfn  6104  sucinc2  6189  nndomo  6560  prarloclemn  7037
  Copyright terms: Public domain W3C validator