| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordsucss | GIF version | ||
| Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4469 | . 2 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 2 | trss 4191 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 3 | snssi 3812 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵)) |
| 5 | 2, 4 | jcad 307 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵))) |
| 6 | unss 3378 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) | |
| 7 | 5, 6 | imbitrdi 161 | . . 3 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵)) |
| 8 | df-suc 4462 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | sseq1i 3250 | . . 3 ⊢ (suc 𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) |
| 10 | 7, 9 | imbitrrdi 162 | . 2 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| 11 | 1, 10 | syl 14 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 {csn 3666 Tr wtr 4182 Ord word 4453 suc csuc 4456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-suc 4462 |
| This theorem is referenced by: ordelsuc 4597 tfrlemibfn 6480 tfr1onlembfn 6496 tfrcllembfn 6509 sucinc2 6600 nndomo 7033 prarloclemn 7694 ennnfonelemhom 12994 ennnfonelemrn 12998 |
| Copyright terms: Public domain | W3C validator |