ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucss GIF version

Theorem ordsucss 4556
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
ordsucss (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))

Proof of Theorem ordsucss
StepHypRef Expression
1 ordtr 4429 . 2 (Ord 𝐵 → Tr 𝐵)
2 trss 4155 . . . . 5 (Tr 𝐵 → (𝐴𝐵𝐴𝐵))
3 snssi 3779 . . . . . 6 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
43a1i 9 . . . . 5 (Tr 𝐵 → (𝐴𝐵 → {𝐴} ⊆ 𝐵))
52, 4jcad 307 . . . 4 (Tr 𝐵 → (𝐴𝐵 → (𝐴𝐵 ∧ {𝐴} ⊆ 𝐵)))
6 unss 3348 . . . 4 ((𝐴𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
75, 6imbitrdi 161 . . 3 (Tr 𝐵 → (𝐴𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵))
8 df-suc 4422 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
98sseq1i 3220 . . 3 (suc 𝐴𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵)
107, 9imbitrrdi 162 . 2 (Tr 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
111, 10syl 14 1 (Ord 𝐵 → (𝐴𝐵 → suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  cun 3165  wss 3167  {csn 3634  Tr wtr 4146  Ord word 4413  suc csuc 4416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-uni 3853  df-tr 4147  df-iord 4417  df-suc 4422
This theorem is referenced by:  ordelsuc  4557  tfrlemibfn  6421  tfr1onlembfn  6437  tfrcllembfn  6450  sucinc2  6539  nndomo  6968  prarloclemn  7619  ennnfonelemhom  12830  ennnfonelemrn  12834
  Copyright terms: Public domain W3C validator