| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordsucss | GIF version | ||
| Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ordtr 4413 | . 2 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 2 | trss 4140 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
| 3 | snssi 3766 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵)) | 
| 5 | 2, 4 | jcad 307 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵))) | 
| 6 | unss 3337 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) | |
| 7 | 5, 6 | imbitrdi 161 | . . 3 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵)) | 
| 8 | df-suc 4406 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 9 | 8 | sseq1i 3209 | . . 3 ⊢ (suc 𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) | 
| 10 | 7, 9 | imbitrrdi 162 | . 2 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | 
| 11 | 1, 10 | syl 14 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 {csn 3622 Tr wtr 4131 Ord word 4397 suc csuc 4400 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-suc 4406 | 
| This theorem is referenced by: ordelsuc 4541 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllembfn 6415 sucinc2 6504 nndomo 6925 prarloclemn 7566 ennnfonelemhom 12632 ennnfonelemrn 12636 | 
| Copyright terms: Public domain | W3C validator |