Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordsucss | GIF version |
Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
ordsucss | ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4356 | . 2 ⊢ (Ord 𝐵 → Tr 𝐵) | |
2 | trss 4089 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) | |
3 | snssi 3717 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵)) |
5 | 2, 4 | jcad 305 | . . . 4 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵))) |
6 | unss 3296 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ {𝐴} ⊆ 𝐵) ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) | |
7 | 5, 6 | syl6ib 160 | . . 3 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → (𝐴 ∪ {𝐴}) ⊆ 𝐵)) |
8 | df-suc 4349 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
9 | 8 | sseq1i 3168 | . . 3 ⊢ (suc 𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ {𝐴}) ⊆ 𝐵) |
10 | 7, 9 | syl6ibr 161 | . 2 ⊢ (Tr 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
11 | 1, 10 | syl 14 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∪ cun 3114 ⊆ wss 3116 {csn 3576 Tr wtr 4080 Ord word 4340 suc csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-suc 4349 |
This theorem is referenced by: ordelsuc 4482 tfrlemibfn 6296 tfr1onlembfn 6312 tfrcllembfn 6325 sucinc2 6414 nndomo 6830 prarloclemn 7440 ennnfonelemhom 12348 ennnfonelemrn 12352 |
Copyright terms: Public domain | W3C validator |