ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid GIF version

Theorem ordsucunielexmid 4584
Description: The converse of sucunielr 4563 (where 𝐵 is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
Assertion
Ref Expression
ordsucunielexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ordsucunielexmid
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4427 . . . . . . . 8 (𝑏 ∈ On → Ord 𝑏)
2 ordtr 4430 . . . . . . . 8 (Ord 𝑏 → Tr 𝑏)
31, 2syl 14 . . . . . . 7 (𝑏 ∈ On → Tr 𝑏)
4 vex 2776 . . . . . . . 8 𝑏 ∈ V
54unisuc 4465 . . . . . . 7 (Tr 𝑏 suc 𝑏 = 𝑏)
63, 5sylib 122 . . . . . 6 (𝑏 ∈ On → suc 𝑏 = 𝑏)
76eleq2d 2276 . . . . 5 (𝑏 ∈ On → (𝑎 suc 𝑏𝑎𝑏))
87adantl 277 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏𝑎𝑏))
9 onsuc 4554 . . . . 5 (𝑏 ∈ On → suc 𝑏 ∈ On)
10 ordsucunielexmid.1 . . . . . 6 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
11 eleq1 2269 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 𝑦𝑎 𝑦))
12 suceq 4454 . . . . . . . . 9 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
1312eleq1d 2275 . . . . . . . 8 (𝑥 = 𝑎 → (suc 𝑥𝑦 ↔ suc 𝑎𝑦))
1411, 13imbi12d 234 . . . . . . 7 (𝑥 = 𝑎 → ((𝑥 𝑦 → suc 𝑥𝑦) ↔ (𝑎 𝑦 → suc 𝑎𝑦)))
15 unieq 3862 . . . . . . . . 9 (𝑦 = suc 𝑏 𝑦 = suc 𝑏)
1615eleq2d 2276 . . . . . . . 8 (𝑦 = suc 𝑏 → (𝑎 𝑦𝑎 suc 𝑏))
17 eleq2 2270 . . . . . . . 8 (𝑦 = suc 𝑏 → (suc 𝑎𝑦 ↔ suc 𝑎 ∈ suc 𝑏))
1816, 17imbi12d 234 . . . . . . 7 (𝑦 = suc 𝑏 → ((𝑎 𝑦 → suc 𝑎𝑦) ↔ (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏)))
1914, 18rspc2va 2893 . . . . . 6 (((𝑎 ∈ On ∧ suc 𝑏 ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
2010, 19mpan2 425 . . . . 5 ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
219, 20sylan2 286 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
228, 21sylbird 170 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏))
2322rgen2a 2561 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏)
2423onsucelsucexmid 4583 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  wral 2485   cuni 3853  Tr wtr 4147  Ord word 4414  Oncon0 4415  suc csuc 4417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-uni 3854  df-tr 4148  df-iord 4418  df-on 4420  df-suc 4423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator