Step | Hyp | Ref
| Expression |
1 | | eloni 4353 |
. . . . . . . 8
⊢ (𝑏 ∈ On → Ord 𝑏) |
2 | | ordtr 4356 |
. . . . . . . 8
⊢ (Ord
𝑏 → Tr 𝑏) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝑏 ∈ On → Tr 𝑏) |
4 | | vex 2729 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
5 | 4 | unisuc 4391 |
. . . . . . 7
⊢ (Tr 𝑏 ↔ ∪ suc 𝑏 = 𝑏) |
6 | 3, 5 | sylib 121 |
. . . . . 6
⊢ (𝑏 ∈ On → ∪ suc 𝑏 = 𝑏) |
7 | 6 | eleq2d 2236 |
. . . . 5
⊢ (𝑏 ∈ On → (𝑎 ∈ ∪ suc 𝑏 ↔ 𝑎 ∈ 𝑏)) |
8 | 7 | adantl 275 |
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 ↔ 𝑎 ∈ 𝑏)) |
9 | | suceloni 4478 |
. . . . 5
⊢ (𝑏 ∈ On → suc 𝑏 ∈ On) |
10 | | ordsucunielexmid.1 |
. . . . . 6
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ ∪ 𝑦
→ suc 𝑥 ∈ 𝑦) |
11 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑥 ∈ ∪ 𝑦 ↔ 𝑎 ∈ ∪ 𝑦)) |
12 | | suceq 4380 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) |
13 | 12 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (suc 𝑥 ∈ 𝑦 ↔ suc 𝑎 ∈ 𝑦)) |
14 | 11, 13 | imbi12d 233 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → ((𝑥 ∈ ∪ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ (𝑎 ∈ ∪ 𝑦 → suc 𝑎 ∈ 𝑦))) |
15 | | unieq 3798 |
. . . . . . . . 9
⊢ (𝑦 = suc 𝑏 → ∪ 𝑦 = ∪
suc 𝑏) |
16 | 15 | eleq2d 2236 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑏 → (𝑎 ∈ ∪ 𝑦 ↔ 𝑎 ∈ ∪ suc
𝑏)) |
17 | | eleq2 2230 |
. . . . . . . 8
⊢ (𝑦 = suc 𝑏 → (suc 𝑎 ∈ 𝑦 ↔ suc 𝑎 ∈ suc 𝑏)) |
18 | 16, 17 | imbi12d 233 |
. . . . . . 7
⊢ (𝑦 = suc 𝑏 → ((𝑎 ∈ ∪ 𝑦 → suc 𝑎 ∈ 𝑦) ↔ (𝑎 ∈ ∪ suc
𝑏 → suc 𝑎 ∈ suc 𝑏))) |
19 | 14, 18 | rspc2va 2844 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ suc 𝑏 ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ ∪ 𝑦 → suc 𝑥 ∈ 𝑦)) → (𝑎 ∈ ∪ suc
𝑏 → suc 𝑎 ∈ suc 𝑏)) |
20 | 10, 19 | mpan2 422 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 → suc 𝑎 ∈ suc 𝑏)) |
21 | 9, 20 | sylan2 284 |
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 → suc 𝑎 ∈ suc 𝑏)) |
22 | 8, 21 | sylbird 169 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ 𝑏 → suc 𝑎 ∈ suc 𝑏)) |
23 | 22 | rgen2a 2520 |
. 2
⊢
∀𝑎 ∈ On
∀𝑏 ∈ On (𝑎 ∈ 𝑏 → suc 𝑎 ∈ suc 𝑏) |
24 | 23 | onsucelsucexmid 4507 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |