| Step | Hyp | Ref
 | Expression | 
| 1 |   | eloni 4410 | 
. . . . . . . 8
⊢ (𝑏 ∈ On → Ord 𝑏) | 
| 2 |   | ordtr 4413 | 
. . . . . . . 8
⊢ (Ord
𝑏 → Tr 𝑏) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . 7
⊢ (𝑏 ∈ On → Tr 𝑏) | 
| 4 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑏 ∈ V | 
| 5 | 4 | unisuc 4448 | 
. . . . . . 7
⊢ (Tr 𝑏 ↔ ∪ suc 𝑏 = 𝑏) | 
| 6 | 3, 5 | sylib 122 | 
. . . . . 6
⊢ (𝑏 ∈ On → ∪ suc 𝑏 = 𝑏) | 
| 7 | 6 | eleq2d 2266 | 
. . . . 5
⊢ (𝑏 ∈ On → (𝑎 ∈ ∪ suc 𝑏 ↔ 𝑎 ∈ 𝑏)) | 
| 8 | 7 | adantl 277 | 
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 ↔ 𝑎 ∈ 𝑏)) | 
| 9 |   | onsuc 4537 | 
. . . . 5
⊢ (𝑏 ∈ On → suc 𝑏 ∈ On) | 
| 10 |   | ordsucunielexmid.1 | 
. . . . . 6
⊢
∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ ∪ 𝑦
→ suc 𝑥 ∈ 𝑦) | 
| 11 |   | eleq1 2259 | 
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑥 ∈ ∪ 𝑦 ↔ 𝑎 ∈ ∪ 𝑦)) | 
| 12 |   | suceq 4437 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎) | 
| 13 | 12 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (suc 𝑥 ∈ 𝑦 ↔ suc 𝑎 ∈ 𝑦)) | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑥 = 𝑎 → ((𝑥 ∈ ∪ 𝑦 → suc 𝑥 ∈ 𝑦) ↔ (𝑎 ∈ ∪ 𝑦 → suc 𝑎 ∈ 𝑦))) | 
| 15 |   | unieq 3848 | 
. . . . . . . . 9
⊢ (𝑦 = suc 𝑏 → ∪ 𝑦 = ∪
suc 𝑏) | 
| 16 | 15 | eleq2d 2266 | 
. . . . . . . 8
⊢ (𝑦 = suc 𝑏 → (𝑎 ∈ ∪ 𝑦 ↔ 𝑎 ∈ ∪ suc
𝑏)) | 
| 17 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑦 = suc 𝑏 → (suc 𝑎 ∈ 𝑦 ↔ suc 𝑎 ∈ suc 𝑏)) | 
| 18 | 16, 17 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑦 = suc 𝑏 → ((𝑎 ∈ ∪ 𝑦 → suc 𝑎 ∈ 𝑦) ↔ (𝑎 ∈ ∪ suc
𝑏 → suc 𝑎 ∈ suc 𝑏))) | 
| 19 | 14, 18 | rspc2va 2882 | 
. . . . . 6
⊢ (((𝑎 ∈ On ∧ suc 𝑏 ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ∈ ∪ 𝑦 → suc 𝑥 ∈ 𝑦)) → (𝑎 ∈ ∪ suc
𝑏 → suc 𝑎 ∈ suc 𝑏)) | 
| 20 | 10, 19 | mpan2 425 | 
. . . . 5
⊢ ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 → suc 𝑎 ∈ suc 𝑏)) | 
| 21 | 9, 20 | sylan2 286 | 
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ ∪ suc 𝑏 → suc 𝑎 ∈ suc 𝑏)) | 
| 22 | 8, 21 | sylbird 170 | 
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 ∈ 𝑏 → suc 𝑎 ∈ suc 𝑏)) | 
| 23 | 22 | rgen2a 2551 | 
. 2
⊢
∀𝑎 ∈ On
∀𝑏 ∈ On (𝑎 ∈ 𝑏 → suc 𝑎 ∈ suc 𝑏) | 
| 24 | 23 | onsucelsucexmid 4566 | 
1
⊢ (𝜑 ∨ ¬ 𝜑) |