ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsucunielexmid GIF version

Theorem ordsucunielexmid 4441
Description: The converse of sucunielr 4421 (where 𝐵 is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
Hypothesis
Ref Expression
ordsucunielexmid.1 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
Assertion
Ref Expression
ordsucunielexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ordsucunielexmid
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eloni 4292 . . . . . . . 8 (𝑏 ∈ On → Ord 𝑏)
2 ordtr 4295 . . . . . . . 8 (Ord 𝑏 → Tr 𝑏)
31, 2syl 14 . . . . . . 7 (𝑏 ∈ On → Tr 𝑏)
4 vex 2684 . . . . . . . 8 𝑏 ∈ V
54unisuc 4330 . . . . . . 7 (Tr 𝑏 suc 𝑏 = 𝑏)
63, 5sylib 121 . . . . . 6 (𝑏 ∈ On → suc 𝑏 = 𝑏)
76eleq2d 2207 . . . . 5 (𝑏 ∈ On → (𝑎 suc 𝑏𝑎𝑏))
87adantl 275 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏𝑎𝑏))
9 suceloni 4412 . . . . 5 (𝑏 ∈ On → suc 𝑏 ∈ On)
10 ordsucunielexmid.1 . . . . . 6 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)
11 eleq1 2200 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 𝑦𝑎 𝑦))
12 suceq 4319 . . . . . . . . 9 (𝑥 = 𝑎 → suc 𝑥 = suc 𝑎)
1312eleq1d 2206 . . . . . . . 8 (𝑥 = 𝑎 → (suc 𝑥𝑦 ↔ suc 𝑎𝑦))
1411, 13imbi12d 233 . . . . . . 7 (𝑥 = 𝑎 → ((𝑥 𝑦 → suc 𝑥𝑦) ↔ (𝑎 𝑦 → suc 𝑎𝑦)))
15 unieq 3740 . . . . . . . . 9 (𝑦 = suc 𝑏 𝑦 = suc 𝑏)
1615eleq2d 2207 . . . . . . . 8 (𝑦 = suc 𝑏 → (𝑎 𝑦𝑎 suc 𝑏))
17 eleq2 2201 . . . . . . . 8 (𝑦 = suc 𝑏 → (suc 𝑎𝑦 ↔ suc 𝑎 ∈ suc 𝑏))
1816, 17imbi12d 233 . . . . . . 7 (𝑦 = suc 𝑏 → ((𝑎 𝑦 → suc 𝑎𝑦) ↔ (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏)))
1914, 18rspc2va 2798 . . . . . 6 (((𝑎 ∈ On ∧ suc 𝑏 ∈ On) ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 𝑦 → suc 𝑥𝑦)) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
2010, 19mpan2 421 . . . . 5 ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
219, 20sylan2 284 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 suc 𝑏 → suc 𝑎 ∈ suc 𝑏))
228, 21sylbird 169 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏))
2322rgen2a 2484 . 2 𝑎 ∈ On ∀𝑏 ∈ On (𝑎𝑏 → suc 𝑎 ∈ suc 𝑏)
2423onsucelsucexmid 4440 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480  wral 2414   cuni 3731  Tr wtr 4021  Ord word 4279  Oncon0 4280  suc csuc 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285  df-suc 4288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator