ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctmlemr GIF version

Theorem ctmlemr 7174
Description: Lemma for ctm 7175. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
Assertion
Ref Expression
ctmlemr (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝑥,𝑓
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ctmlemr
Dummy variables 𝑔 𝑛 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6498 . . . . . . . . . 10 ∅ ∈ 1o
2 djurcl 7118 . . . . . . . . . 10 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
31, 2ax-mp 5 . . . . . . . . 9 (inr‘∅) ∈ (𝐴 ⊔ 1o)
43a1i 9 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ 𝑛 = ∅) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
5 simpllr 534 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω–onto𝐴)
6 fof 5480 . . . . . . . . . . 11 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
75, 6syl 14 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω⟶𝐴)
8 nnpredcl 4659 . . . . . . . . . . 11 (𝑛 ∈ ω → 𝑛 ∈ ω)
98ad2antlr 489 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑛 ∈ ω)
107, 9ffvelcdmd 5698 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (𝑓 𝑛) ∈ 𝐴)
11 djulcl 7117 . . . . . . . . 9 ((𝑓 𝑛) ∈ 𝐴 → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
1210, 11syl 14 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
13 nndceq0 4654 . . . . . . . . 9 (𝑛 ∈ ω → DECID 𝑛 = ∅)
1413adantl 277 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → DECID 𝑛 = ∅)
154, 12, 14ifcldadc 3590 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) ∈ (𝐴 ⊔ 1o))
1615fmpttd 5717 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o))
17 simpllr 534 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑓:ω–onto𝐴)
18 simprl 529 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑤𝐴)
19 foelrn 5799 . . . . . . . . . . 11 ((𝑓:ω–onto𝐴𝑤𝐴) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
2017, 18, 19syl2anc 411 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
21 peano2 4631 . . . . . . . . . . . 12 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
2221ad2antrl 490 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 ∈ ω)
23 simplrr 536 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘𝑤))
24 simprl 529 . . . . . . . . . . . . . . . . . . 19 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑢 ∈ ω)
25 nnord 4648 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → Ord 𝑢)
26 ordtr 4413 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑢 → Tr 𝑢)
2724, 25, 263syl 17 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → Tr 𝑢)
28 unisucg 4449 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → (Tr 𝑢 suc 𝑢 = 𝑢))
2928ad2antrl 490 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (Tr 𝑢 suc 𝑢 = 𝑢))
3027, 29mpbid 147 . . . . . . . . . . . . . . . . 17 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 = 𝑢)
3130fveq2d 5562 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = (𝑓𝑢))
32 simprr 531 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑤 = (𝑓𝑢))
3331, 32eqtr4d 2232 . . . . . . . . . . . . . . 15 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = 𝑤)
3433fveq2d 5562 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (inl‘(𝑓 suc 𝑢)) = (inl‘𝑤))
3523, 34eqtr4d 2232 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘(𝑓 suc 𝑢)))
36 peano3 4632 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → suc 𝑢 ≠ ∅)
3736neneqd 2388 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ¬ suc 𝑢 = ∅)
3837ad2antrl 490 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ¬ suc 𝑢 = ∅)
3938iffalsed 3571 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) = (inl‘(𝑓 suc 𝑢)))
4035, 39eqtr4d 2232 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
41 eqid 2196 . . . . . . . . . . . . 13 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))
42 eqeq1 2203 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (𝑛 = ∅ ↔ suc 𝑢 = ∅))
43 unieq 3848 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑢 𝑛 = suc 𝑢)
4443fveq2d 5562 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑢 → (𝑓 𝑛) = (𝑓 suc 𝑢))
4544fveq2d 5562 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 suc 𝑢)))
4642, 45ifbieq2d 3585 . . . . . . . . . . . . 13 (𝑛 = suc 𝑢 → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
47 simpllr 534 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 ∈ (𝐴 ⊔ 1o))
4840, 47eqeltrrd 2274 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) ∈ (𝐴 ⊔ 1o))
4941, 46, 22, 48fvmptd3 5655 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
5040, 49eqtr4d 2232 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
51 fveq2 5558 . . . . . . . . . . . 12 (𝑧 = suc 𝑢 → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
5251rspceeqv 2886 . . . . . . . . . . 11 ((suc 𝑢 ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5322, 50, 52syl2anc 411 . . . . . . . . . 10 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5420, 53rexlimddv 2619 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5554rexlimdvaa 2615 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
56 peano1 4630 . . . . . . . . . 10 ∅ ∈ ω
57 simprr 531 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘𝑤))
58 simprl 529 . . . . . . . . . . . . . . 15 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 ∈ 1o)
59 el1o 6495 . . . . . . . . . . . . . . 15 (𝑤 ∈ 1o𝑤 = ∅)
6058, 59sylib 122 . . . . . . . . . . . . . 14 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 = ∅)
6160fveq2d 5562 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → (inr‘𝑤) = (inr‘∅))
6257, 61eqtrd 2229 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘∅))
63 eqid 2196 . . . . . . . . . . . . 13 ∅ = ∅
6463iftruei 3567 . . . . . . . . . . . 12 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) = (inr‘∅)
6562, 64eqtr4di 2247 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
6664, 3eqeltri 2269 . . . . . . . . . . . . 13 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)
6766a1i 9 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o))
68 eqeq1 2203 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (𝑛 = ∅ ↔ ∅ = ∅))
69 unieq 3848 . . . . . . . . . . . . . . . 16 (𝑛 = ∅ → 𝑛 = ∅)
7069fveq2d 5562 . . . . . . . . . . . . . . 15 (𝑛 = ∅ → (𝑓 𝑛) = (𝑓 ∅))
7170fveq2d 5562 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 ∅)))
7268, 71ifbieq2d 3585 . . . . . . . . . . . . 13 (𝑛 = ∅ → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7372, 41fvmptg 5637 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7456, 67, 73sylancr 414 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7565, 74eqtr4d 2232 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
76 fveq2 5558 . . . . . . . . . . 11 (𝑧 = ∅ → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
7776rspceeqv 2886 . . . . . . . . . 10 ((∅ ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7856, 75, 77sylancr 414 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7978rexlimdvaa 2615 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
80 djur 7135 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8180biimpi 120 . . . . . . . . 9 (𝑦 ∈ (𝐴 ⊔ 1o) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8281adantl 277 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8355, 79, 82mpjaod 719 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
8483ralrimiva 2570 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
85 dffo3 5709 . . . . . 6 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
8616, 84, 85sylanbrc 417 . . . . 5 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o))
87 omex 4629 . . . . . . 7 ω ∈ V
8887mptex 5788 . . . . . 6 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) ∈ V
89 foeq1 5476 . . . . . 6 (𝑔 = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o)))
9088, 89spcev 2859 . . . . 5 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9186, 90syl 14 . . . 4 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9291ex 115 . . 3 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9392exlimdv 1833 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
94 foeq1 5476 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9594cbvexv 1933 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9693, 95imbitrrdi 162 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  c0 3450  ifcif 3561   cuni 3839  cmpt 4094  Tr wtr 4131  Ord word 4397  suc csuc 4400  ωcom 4626  wf 5254  ontowfo 5256  cfv 5258  1oc1o 6467  cdju 7103  inlcinl 7111  inrcinr 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114
This theorem is referenced by:  ctm  7175
  Copyright terms: Public domain W3C validator