ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctmlemr GIF version

Theorem ctmlemr 6986
Description: Lemma for ctm 6987. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
Assertion
Ref Expression
ctmlemr (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝑥,𝑓
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ctmlemr
Dummy variables 𝑔 𝑛 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6330 . . . . . . . . . 10 ∅ ∈ 1o
2 djurcl 6930 . . . . . . . . . 10 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
31, 2ax-mp 5 . . . . . . . . 9 (inr‘∅) ∈ (𝐴 ⊔ 1o)
43a1i 9 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ 𝑛 = ∅) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
5 simpllr 523 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω–onto𝐴)
6 fof 5340 . . . . . . . . . . 11 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
75, 6syl 14 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω⟶𝐴)
8 nnpredcl 4531 . . . . . . . . . . 11 (𝑛 ∈ ω → 𝑛 ∈ ω)
98ad2antlr 480 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑛 ∈ ω)
107, 9ffvelrnd 5549 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (𝑓 𝑛) ∈ 𝐴)
11 djulcl 6929 . . . . . . . . 9 ((𝑓 𝑛) ∈ 𝐴 → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
1210, 11syl 14 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
13 nndceq0 4526 . . . . . . . . 9 (𝑛 ∈ ω → DECID 𝑛 = ∅)
1413adantl 275 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → DECID 𝑛 = ∅)
154, 12, 14ifcldadc 3496 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) ∈ (𝐴 ⊔ 1o))
1615fmpttd 5568 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o))
17 simpllr 523 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑓:ω–onto𝐴)
18 simprl 520 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑤𝐴)
19 foelrn 5647 . . . . . . . . . . 11 ((𝑓:ω–onto𝐴𝑤𝐴) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
2017, 18, 19syl2anc 408 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
21 peano2 4504 . . . . . . . . . . . 12 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
2221ad2antrl 481 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 ∈ ω)
23 simplrr 525 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘𝑤))
24 simprl 520 . . . . . . . . . . . . . . . . . . 19 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑢 ∈ ω)
25 nnord 4520 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → Ord 𝑢)
26 ordtr 4295 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑢 → Tr 𝑢)
2724, 25, 263syl 17 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → Tr 𝑢)
28 unisucg 4331 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → (Tr 𝑢 suc 𝑢 = 𝑢))
2928ad2antrl 481 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (Tr 𝑢 suc 𝑢 = 𝑢))
3027, 29mpbid 146 . . . . . . . . . . . . . . . . 17 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 = 𝑢)
3130fveq2d 5418 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = (𝑓𝑢))
32 simprr 521 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑤 = (𝑓𝑢))
3331, 32eqtr4d 2173 . . . . . . . . . . . . . . 15 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = 𝑤)
3433fveq2d 5418 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (inl‘(𝑓 suc 𝑢)) = (inl‘𝑤))
3523, 34eqtr4d 2173 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘(𝑓 suc 𝑢)))
36 peano3 4505 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → suc 𝑢 ≠ ∅)
3736neneqd 2327 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ¬ suc 𝑢 = ∅)
3837ad2antrl 481 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ¬ suc 𝑢 = ∅)
3938iffalsed 3479 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) = (inl‘(𝑓 suc 𝑢)))
4035, 39eqtr4d 2173 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
41 eqid 2137 . . . . . . . . . . . . 13 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))
42 eqeq1 2144 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (𝑛 = ∅ ↔ suc 𝑢 = ∅))
43 unieq 3740 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑢 𝑛 = suc 𝑢)
4443fveq2d 5418 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑢 → (𝑓 𝑛) = (𝑓 suc 𝑢))
4544fveq2d 5418 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 suc 𝑢)))
4642, 45ifbieq2d 3491 . . . . . . . . . . . . 13 (𝑛 = suc 𝑢 → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
47 simpllr 523 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 ∈ (𝐴 ⊔ 1o))
4840, 47eqeltrrd 2215 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) ∈ (𝐴 ⊔ 1o))
4941, 46, 22, 48fvmptd3 5507 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
5040, 49eqtr4d 2173 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
51 fveq2 5414 . . . . . . . . . . . 12 (𝑧 = suc 𝑢 → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
5251rspceeqv 2802 . . . . . . . . . . 11 ((suc 𝑢 ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5322, 50, 52syl2anc 408 . . . . . . . . . 10 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5420, 53rexlimddv 2552 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5554rexlimdvaa 2548 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
56 peano1 4503 . . . . . . . . . 10 ∅ ∈ ω
57 simprr 521 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘𝑤))
58 simprl 520 . . . . . . . . . . . . . . 15 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 ∈ 1o)
59 el1o 6327 . . . . . . . . . . . . . . 15 (𝑤 ∈ 1o𝑤 = ∅)
6058, 59sylib 121 . . . . . . . . . . . . . 14 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 = ∅)
6160fveq2d 5418 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → (inr‘𝑤) = (inr‘∅))
6257, 61eqtrd 2170 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘∅))
63 eqid 2137 . . . . . . . . . . . . 13 ∅ = ∅
6463iftruei 3475 . . . . . . . . . . . 12 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) = (inr‘∅)
6562, 64syl6eqr 2188 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
6664, 3eqeltri 2210 . . . . . . . . . . . . 13 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)
6766a1i 9 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o))
68 eqeq1 2144 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (𝑛 = ∅ ↔ ∅ = ∅))
69 unieq 3740 . . . . . . . . . . . . . . . 16 (𝑛 = ∅ → 𝑛 = ∅)
7069fveq2d 5418 . . . . . . . . . . . . . . 15 (𝑛 = ∅ → (𝑓 𝑛) = (𝑓 ∅))
7170fveq2d 5418 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 ∅)))
7268, 71ifbieq2d 3491 . . . . . . . . . . . . 13 (𝑛 = ∅ → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7372, 41fvmptg 5490 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7456, 67, 73sylancr 410 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7565, 74eqtr4d 2173 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
76 fveq2 5414 . . . . . . . . . . 11 (𝑧 = ∅ → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
7776rspceeqv 2802 . . . . . . . . . 10 ((∅ ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7856, 75, 77sylancr 410 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7978rexlimdvaa 2548 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
80 djur 6947 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8180biimpi 119 . . . . . . . . 9 (𝑦 ∈ (𝐴 ⊔ 1o) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8281adantl 275 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8355, 79, 82mpjaod 707 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
8483ralrimiva 2503 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
85 dffo3 5560 . . . . . 6 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
8616, 84, 85sylanbrc 413 . . . . 5 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o))
87 omex 4502 . . . . . . 7 ω ∈ V
8887mptex 5639 . . . . . 6 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) ∈ V
89 foeq1 5336 . . . . . 6 (𝑔 = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o)))
9088, 89spcev 2775 . . . . 5 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9186, 90syl 14 . . . 4 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9291ex 114 . . 3 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9392exlimdv 1791 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
94 foeq1 5336 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9594cbvexv 1890 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9693, 95syl6ibr 161 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wex 1468  wcel 1480  wral 2414  wrex 2415  c0 3358  ifcif 3469   cuni 3731  cmpt 3984  Tr wtr 4021  Ord word 4279  suc csuc 4282  ωcom 4499  wf 5114  ontowfo 5116  cfv 5118  1oc1o 6299  cdju 6915  inlcinl 6923  inrcinr 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032  df-1o 6306  df-dju 6916  df-inl 6925  df-inr 6926
This theorem is referenced by:  ctm  6987
  Copyright terms: Public domain W3C validator