ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctmlemr GIF version

Theorem ctmlemr 7073
Description: Lemma for ctm 7074. One of the directions of the biconditional. (Contributed by Jim Kingdon, 16-Mar-2023.)
Assertion
Ref Expression
ctmlemr (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Distinct variable groups:   𝐴,𝑓   𝑥,𝑓
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ctmlemr
Dummy variables 𝑔 𝑛 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0lt1o 6408 . . . . . . . . . 10 ∅ ∈ 1o
2 djurcl 7017 . . . . . . . . . 10 (∅ ∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o))
31, 2ax-mp 5 . . . . . . . . 9 (inr‘∅) ∈ (𝐴 ⊔ 1o)
43a1i 9 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ 𝑛 = ∅) → (inr‘∅) ∈ (𝐴 ⊔ 1o))
5 simpllr 524 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω–onto𝐴)
6 fof 5410 . . . . . . . . . . 11 (𝑓:ω–onto𝐴𝑓:ω⟶𝐴)
75, 6syl 14 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω⟶𝐴)
8 nnpredcl 4600 . . . . . . . . . . 11 (𝑛 ∈ ω → 𝑛 ∈ ω)
98ad2antlr 481 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑛 ∈ ω)
107, 9ffvelrnd 5621 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (𝑓 𝑛) ∈ 𝐴)
11 djulcl 7016 . . . . . . . . 9 ((𝑓 𝑛) ∈ 𝐴 → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
1210, 11syl 14 . . . . . . . 8 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (inl‘(𝑓 𝑛)) ∈ (𝐴 ⊔ 1o))
13 nndceq0 4595 . . . . . . . . 9 (𝑛 ∈ ω → DECID 𝑛 = ∅)
1413adantl 275 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → DECID 𝑛 = ∅)
154, 12, 14ifcldadc 3549 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑛 ∈ ω) → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) ∈ (𝐴 ⊔ 1o))
1615fmpttd 5640 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o))
17 simpllr 524 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑓:ω–onto𝐴)
18 simprl 521 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → 𝑤𝐴)
19 foelrn 5721 . . . . . . . . . . 11 ((𝑓:ω–onto𝐴𝑤𝐴) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
2017, 18, 19syl2anc 409 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑢 ∈ ω 𝑤 = (𝑓𝑢))
21 peano2 4572 . . . . . . . . . . . 12 (𝑢 ∈ ω → suc 𝑢 ∈ ω)
2221ad2antrl 482 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 ∈ ω)
23 simplrr 526 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘𝑤))
24 simprl 521 . . . . . . . . . . . . . . . . . . 19 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑢 ∈ ω)
25 nnord 4589 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → Ord 𝑢)
26 ordtr 4356 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑢 → Tr 𝑢)
2724, 25, 263syl 17 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → Tr 𝑢)
28 unisucg 4392 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ω → (Tr 𝑢 suc 𝑢 = 𝑢))
2928ad2antrl 482 . . . . . . . . . . . . . . . . . 18 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (Tr 𝑢 suc 𝑢 = 𝑢))
3027, 29mpbid 146 . . . . . . . . . . . . . . . . 17 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → suc 𝑢 = 𝑢)
3130fveq2d 5490 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = (𝑓𝑢))
32 simprr 522 . . . . . . . . . . . . . . . 16 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑤 = (𝑓𝑢))
3331, 32eqtr4d 2201 . . . . . . . . . . . . . . 15 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (𝑓 suc 𝑢) = 𝑤)
3433fveq2d 5490 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → (inl‘(𝑓 suc 𝑢)) = (inl‘𝑤))
3523, 34eqtr4d 2201 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = (inl‘(𝑓 suc 𝑢)))
36 peano3 4573 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ω → suc 𝑢 ≠ ∅)
3736neneqd 2357 . . . . . . . . . . . . . . 15 (𝑢 ∈ ω → ¬ suc 𝑢 = ∅)
3837ad2antrl 482 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ¬ suc 𝑢 = ∅)
3938iffalsed 3530 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) = (inl‘(𝑓 suc 𝑢)))
4035, 39eqtr4d 2201 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
41 eqid 2165 . . . . . . . . . . . . 13 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))
42 eqeq1 2172 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (𝑛 = ∅ ↔ suc 𝑢 = ∅))
43 unieq 3798 . . . . . . . . . . . . . . . 16 (𝑛 = suc 𝑢 𝑛 = suc 𝑢)
4443fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑛 = suc 𝑢 → (𝑓 𝑛) = (𝑓 suc 𝑢))
4544fveq2d 5490 . . . . . . . . . . . . . 14 (𝑛 = suc 𝑢 → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 suc 𝑢)))
4642, 45ifbieq2d 3544 . . . . . . . . . . . . 13 (𝑛 = suc 𝑢 → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
47 simpllr 524 . . . . . . . . . . . . . 14 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 ∈ (𝐴 ⊔ 1o))
4840, 47eqeltrrd 2244 . . . . . . . . . . . . 13 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))) ∈ (𝐴 ⊔ 1o))
4941, 46, 22, 48fvmptd3 5579 . . . . . . . . . . . 12 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢) = if(suc 𝑢 = ∅, (inr‘∅), (inl‘(𝑓 suc 𝑢))))
5040, 49eqtr4d 2201 . . . . . . . . . . 11 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
51 fveq2 5486 . . . . . . . . . . . 12 (𝑧 = suc 𝑢 → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢))
5251rspceeqv 2848 . . . . . . . . . . 11 ((suc 𝑢 ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘suc 𝑢)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5322, 50, 52syl2anc 409 . . . . . . . . . 10 (((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓𝑢))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5420, 53rexlimddv 2588 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤𝐴𝑦 = (inl‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
5554rexlimdvaa 2584 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
56 peano1 4571 . . . . . . . . . 10 ∅ ∈ ω
57 simprr 522 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘𝑤))
58 simprl 521 . . . . . . . . . . . . . . 15 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 ∈ 1o)
59 el1o 6405 . . . . . . . . . . . . . . 15 (𝑤 ∈ 1o𝑤 = ∅)
6058, 59sylib 121 . . . . . . . . . . . . . 14 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑤 = ∅)
6160fveq2d 5490 . . . . . . . . . . . . 13 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → (inr‘𝑤) = (inr‘∅))
6257, 61eqtrd 2198 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘∅))
63 eqid 2165 . . . . . . . . . . . . 13 ∅ = ∅
6463iftruei 3526 . . . . . . . . . . . 12 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) = (inr‘∅)
6562, 64eqtr4di 2217 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
6664, 3eqeltri 2239 . . . . . . . . . . . . 13 if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)
6766a1i 9 . . . . . . . . . . . 12 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o))
68 eqeq1 2172 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (𝑛 = ∅ ↔ ∅ = ∅))
69 unieq 3798 . . . . . . . . . . . . . . . 16 (𝑛 = ∅ → 𝑛 = ∅)
7069fveq2d 5490 . . . . . . . . . . . . . . 15 (𝑛 = ∅ → (𝑓 𝑛) = (𝑓 ∅))
7170fveq2d 5490 . . . . . . . . . . . . . 14 (𝑛 = ∅ → (inl‘(𝑓 𝑛)) = (inl‘(𝑓 ∅)))
7268, 71ifbieq2d 3544 . . . . . . . . . . . . 13 (𝑛 = ∅ → if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7372, 41fvmptg 5562 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))) ∈ (𝐴 ⊔ 1o)) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7456, 67, 73sylancr 411 . . . . . . . . . . 11 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅) = if(∅ = ∅, (inr‘∅), (inl‘(𝑓 ∅))))
7565, 74eqtr4d 2201 . . . . . . . . . 10 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
76 fveq2 5486 . . . . . . . . . . 11 (𝑧 = ∅ → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅))
7776rspceeqv 2848 . . . . . . . . . 10 ((∅ ∈ ω ∧ 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘∅)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7856, 75, 77sylancr 411 . . . . . . . . 9 ((((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o𝑦 = (inr‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
7978rexlimdvaa 2584 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
80 djur 7034 . . . . . . . . . 10 (𝑦 ∈ (𝐴 ⊔ 1o) ↔ (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8180biimpi 119 . . . . . . . . 9 (𝑦 ∈ (𝐴 ⊔ 1o) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8281adantl 275 . . . . . . . 8 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → (∃𝑤𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤)))
8355, 79, 82mpjaod 708 . . . . . . 7 (((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
8483ralrimiva 2539 . . . . . 6 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧))
85 dffo3 5632 . . . . . 6 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛))))‘𝑧)))
8616, 84, 85sylanbrc 414 . . . . 5 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o))
87 omex 4570 . . . . . . 7 ω ∈ V
8887mptex 5711 . . . . . 6 (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) ∈ V
89 foeq1 5406 . . . . . 6 (𝑔 = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o)))
9088, 89spcev 2821 . . . . 5 ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅), (inl‘(𝑓 𝑛)))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9186, 90syl 14 . . . 4 ((∃𝑥 𝑥𝐴𝑓:ω–onto𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9291ex 114 . . 3 (∃𝑥 𝑥𝐴 → (𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9392exlimdv 1807 . 2 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)))
94 foeq1 5406 . . 3 (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o)))
9594cbvexv 1906 . 2 (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))
9693, 95syl6ibr 161 1 (∃𝑥 𝑥𝐴 → (∃𝑓 𝑓:ω–onto𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  c0 3409  ifcif 3520   cuni 3789  cmpt 4043  Tr wtr 4080  Ord word 4340  suc csuc 4343  ωcom 4567  wf 5184  ontowfo 5186  cfv 5188  1oc1o 6377  cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  ctm  7074
  Copyright terms: Public domain W3C validator