Step | Hyp | Ref
| Expression |
1 | | 0lt1o 6408 |
. . . . . . . . . 10
⊢ ∅
∈ 1o |
2 | | djurcl 7017 |
. . . . . . . . . 10
⊢ (∅
∈ 1o → (inr‘∅) ∈ (𝐴 ⊔ 1o)) |
3 | 1, 2 | ax-mp 5 |
. . . . . . . . 9
⊢
(inr‘∅) ∈ (𝐴 ⊔ 1o) |
4 | 3 | a1i 9 |
. . . . . . . 8
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ 𝑛 = ∅) → (inr‘∅) ∈
(𝐴 ⊔
1o)) |
5 | | simpllr 524 |
. . . . . . . . . . 11
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω–onto→𝐴) |
6 | | fof 5410 |
. . . . . . . . . . 11
⊢ (𝑓:ω–onto→𝐴 → 𝑓:ω⟶𝐴) |
7 | 5, 6 | syl 14 |
. . . . . . . . . 10
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → 𝑓:ω⟶𝐴) |
8 | | nnpredcl 4600 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ∪ 𝑛
∈ ω) |
9 | 8 | ad2antlr 481 |
. . . . . . . . . 10
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → ∪ 𝑛
∈ ω) |
10 | 7, 9 | ffvelrnd 5621 |
. . . . . . . . 9
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) → (𝑓‘∪ 𝑛)
∈ 𝐴) |
11 | | djulcl 7016 |
. . . . . . . . 9
⊢ ((𝑓‘∪ 𝑛)
∈ 𝐴 →
(inl‘(𝑓‘∪ 𝑛))
∈ (𝐴 ⊔
1o)) |
12 | 10, 11 | syl 14 |
. . . . . . . 8
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) ∧ ¬ 𝑛 = ∅) →
(inl‘(𝑓‘∪ 𝑛))
∈ (𝐴 ⊔
1o)) |
13 | | nndceq0 4595 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω →
DECID 𝑛 =
∅) |
14 | 13 | adantl 275 |
. . . . . . . 8
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) → DECID
𝑛 =
∅) |
15 | 4, 12, 14 | ifcldadc 3549 |
. . . . . . 7
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑛 ∈ ω) → if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))
∈ (𝐴 ⊔
1o)) |
16 | 15 | fmpttd 5640 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω⟶(𝐴 ⊔ 1o)) |
17 | | simpllr 524 |
. . . . . . . . . . 11
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) → 𝑓:ω–onto→𝐴) |
18 | | simprl 521 |
. . . . . . . . . . 11
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) → 𝑤 ∈ 𝐴) |
19 | | foelrn 5721 |
. . . . . . . . . . 11
⊢ ((𝑓:ω–onto→𝐴 ∧ 𝑤 ∈ 𝐴) → ∃𝑢 ∈ ω 𝑤 = (𝑓‘𝑢)) |
20 | 17, 18, 19 | syl2anc 409 |
. . . . . . . . . 10
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) → ∃𝑢 ∈ ω 𝑤 = (𝑓‘𝑢)) |
21 | | peano2 4572 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ω → suc 𝑢 ∈
ω) |
22 | 21 | ad2antrl 482 |
. . . . . . . . . . 11
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → suc 𝑢 ∈ ω) |
23 | | simplrr 526 |
. . . . . . . . . . . . . 14
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑦 = (inl‘𝑤)) |
24 | | simprl 521 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑢 ∈ ω) |
25 | | nnord 4589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ω → Ord 𝑢) |
26 | | ordtr 4356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑢 → Tr 𝑢) |
27 | 24, 25, 26 | 3syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → Tr 𝑢) |
28 | | unisucg 4392 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ω → (Tr 𝑢 ↔ ∪ suc 𝑢 = 𝑢)) |
29 | 28 | ad2antrl 482 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → (Tr 𝑢 ↔ ∪ suc
𝑢 = 𝑢)) |
30 | 27, 29 | mpbid 146 |
. . . . . . . . . . . . . . . . 17
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → ∪ suc
𝑢 = 𝑢) |
31 | 30 | fveq2d 5490 |
. . . . . . . . . . . . . . . 16
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → (𝑓‘∪ suc 𝑢) = (𝑓‘𝑢)) |
32 | | simprr 522 |
. . . . . . . . . . . . . . . 16
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑤 = (𝑓‘𝑢)) |
33 | 31, 32 | eqtr4d 2201 |
. . . . . . . . . . . . . . 15
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → (𝑓‘∪ suc 𝑢) = 𝑤) |
34 | 33 | fveq2d 5490 |
. . . . . . . . . . . . . 14
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → (inl‘(𝑓‘∪ suc 𝑢)) = (inl‘𝑤)) |
35 | 23, 34 | eqtr4d 2201 |
. . . . . . . . . . . . 13
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑦 = (inl‘(𝑓‘∪ suc 𝑢))) |
36 | | peano3 4573 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ω → suc 𝑢 ≠ ∅) |
37 | 36 | neneqd 2357 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ω → ¬ suc
𝑢 =
∅) |
38 | 37 | ad2antrl 482 |
. . . . . . . . . . . . . 14
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → ¬ suc 𝑢 = ∅) |
39 | 38 | iffalsed 3530 |
. . . . . . . . . . . . 13
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → if(suc 𝑢 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ suc 𝑢))) = (inl‘(𝑓‘∪ suc 𝑢))) |
40 | 35, 39 | eqtr4d 2201 |
. . . . . . . . . . . 12
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑦 = if(suc 𝑢 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ suc 𝑢)))) |
41 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))) = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))) |
42 | | eqeq1 2172 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = suc 𝑢 → (𝑛 = ∅ ↔ suc 𝑢 = ∅)) |
43 | | unieq 3798 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = suc 𝑢 → ∪ 𝑛 = ∪
suc 𝑢) |
44 | 43 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = suc 𝑢 → (𝑓‘∪ 𝑛) = (𝑓‘∪ suc 𝑢)) |
45 | 44 | fveq2d 5490 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = suc 𝑢 → (inl‘(𝑓‘∪ 𝑛)) = (inl‘(𝑓‘∪ suc 𝑢))) |
46 | 42, 45 | ifbieq2d 3544 |
. . . . . . . . . . . . 13
⊢ (𝑛 = suc 𝑢 → if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))
= if(suc 𝑢 = ∅,
(inr‘∅), (inl‘(𝑓‘∪ suc 𝑢)))) |
47 | | simpllr 524 |
. . . . . . . . . . . . . 14
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑦 ∈ (𝐴 ⊔ 1o)) |
48 | 40, 47 | eqeltrrd 2244 |
. . . . . . . . . . . . 13
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → if(suc 𝑢 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ suc 𝑢))) ∈ (𝐴 ⊔ 1o)) |
49 | 41, 46, 22, 48 | fvmptd3 5579 |
. . . . . . . . . . . 12
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘suc 𝑢) = if(suc 𝑢 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ suc 𝑢)))) |
50 | 40, 49 | eqtr4d 2201 |
. . . . . . . . . . 11
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘suc 𝑢)) |
51 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑧 = suc 𝑢 → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘suc 𝑢)) |
52 | 51 | rspceeqv 2848 |
. . . . . . . . . . 11
⊢ ((suc
𝑢 ∈ ω ∧
𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘suc 𝑢)) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
53 | 22, 50, 52 | syl2anc 409 |
. . . . . . . . . 10
⊢
(((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) ∧ (𝑢 ∈ ω ∧ 𝑤 = (𝑓‘𝑢))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
54 | 20, 53 | rexlimddv 2588 |
. . . . . . . . 9
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 𝐴 ∧ 𝑦 = (inl‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
55 | 54 | rexlimdvaa 2584 |
. . . . . . . 8
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) →
(∃𝑤 ∈ 𝐴 𝑦 = (inl‘𝑤) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧))) |
56 | | peano1 4571 |
. . . . . . . . . 10
⊢ ∅
∈ ω |
57 | | simprr 522 |
. . . . . . . . . . . . 13
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘𝑤)) |
58 | | simprl 521 |
. . . . . . . . . . . . . . 15
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑤 ∈ 1o) |
59 | | el1o 6405 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 1o ↔
𝑤 =
∅) |
60 | 58, 59 | sylib 121 |
. . . . . . . . . . . . . 14
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑤 = ∅) |
61 | 60 | fveq2d 5490 |
. . . . . . . . . . . . 13
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → (inr‘𝑤) =
(inr‘∅)) |
62 | 57, 61 | eqtrd 2198 |
. . . . . . . . . . . 12
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑦 = (inr‘∅)) |
63 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢ ∅ =
∅ |
64 | 63 | iftruei 3526 |
. . . . . . . . . . . 12
⊢
if(∅ = ∅, (inr‘∅), (inl‘(𝑓‘∪ ∅))) = (inr‘∅) |
65 | 62, 64 | eqtr4di 2217 |
. . . . . . . . . . 11
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑦 = if(∅ = ∅, (inr‘∅),
(inl‘(𝑓‘∪ ∅)))) |
66 | 64, 3 | eqeltri 2239 |
. . . . . . . . . . . . 13
⊢
if(∅ = ∅, (inr‘∅), (inl‘(𝑓‘∪ ∅))) ∈ (𝐴 ⊔ 1o) |
67 | 66 | a1i 9 |
. . . . . . . . . . . 12
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → if(∅ = ∅,
(inr‘∅), (inl‘(𝑓‘∪
∅))) ∈ (𝐴
⊔ 1o)) |
68 | | eqeq1 2172 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ∅ → (𝑛 = ∅ ↔ ∅ =
∅)) |
69 | | unieq 3798 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = ∅ → ∪ 𝑛 =
∪ ∅) |
70 | 69 | fveq2d 5490 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = ∅ → (𝑓‘∪ 𝑛) =
(𝑓‘∪ ∅)) |
71 | 70 | fveq2d 5490 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = ∅ →
(inl‘(𝑓‘∪ 𝑛))
= (inl‘(𝑓‘∪ ∅))) |
72 | 68, 71 | ifbieq2d 3544 |
. . . . . . . . . . . . 13
⊢ (𝑛 = ∅ → if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))
= if(∅ = ∅, (inr‘∅), (inl‘(𝑓‘∪
∅)))) |
73 | 72, 41 | fvmptg 5562 |
. . . . . . . . . . . 12
⊢ ((∅
∈ ω ∧ if(∅ = ∅, (inr‘∅),
(inl‘(𝑓‘∪ ∅))) ∈ (𝐴 ⊔ 1o)) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘∅) = if(∅ = ∅,
(inr‘∅), (inl‘(𝑓‘∪
∅)))) |
74 | 56, 67, 73 | sylancr 411 |
. . . . . . . . . . 11
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘∅) = if(∅ = ∅,
(inr‘∅), (inl‘(𝑓‘∪
∅)))) |
75 | 65, 74 | eqtr4d 2201 |
. . . . . . . . . 10
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘∅)) |
76 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧) = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘∅)) |
77 | 76 | rspceeqv 2848 |
. . . . . . . . . 10
⊢ ((∅
∈ ω ∧ 𝑦 =
((𝑛 ∈ ω ↦
if(𝑛 = ∅,
(inr‘∅), (inl‘(𝑓‘∪ 𝑛))))‘∅)) →
∃𝑧 ∈ ω
𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
78 | 56, 75, 77 | sylancr 411 |
. . . . . . . . 9
⊢
((((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) ∧ (𝑤 ∈ 1o ∧
𝑦 = (inr‘𝑤))) → ∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
79 | 78 | rexlimdvaa 2584 |
. . . . . . . 8
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) →
(∃𝑤 ∈
1o 𝑦 =
(inr‘𝑤) →
∃𝑧 ∈ ω
𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧))) |
80 | | djur 7034 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 ⊔ 1o) ↔
(∃𝑤 ∈ 𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) |
81 | 80 | biimpi 119 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐴 ⊔ 1o) →
(∃𝑤 ∈ 𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) |
82 | 81 | adantl 275 |
. . . . . . . 8
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) →
(∃𝑤 ∈ 𝐴 𝑦 = (inl‘𝑤) ∨ ∃𝑤 ∈ 1o 𝑦 = (inr‘𝑤))) |
83 | 55, 79, 82 | mpjaod 708 |
. . . . . . 7
⊢
(((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) ∧ 𝑦 ∈ (𝐴 ⊔ 1o)) →
∃𝑧 ∈ ω
𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
84 | 83 | ralrimiva 2539 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) → ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧)) |
85 | | dffo3 5632 |
. . . . . 6
⊢ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω–onto→(𝐴 ⊔ 1o) ↔ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω⟶(𝐴 ⊔ 1o) ∧ ∀𝑦 ∈ (𝐴 ⊔ 1o)∃𝑧 ∈ ω 𝑦 = ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛))))‘𝑧))) |
86 | 16, 84, 85 | sylanbrc 414 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) → (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω–onto→(𝐴 ⊔ 1o)) |
87 | | omex 4570 |
. . . . . . 7
⊢ ω
∈ V |
88 | 87 | mptex 5711 |
. . . . . 6
⊢ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))) ∈ V |
89 | | foeq1 5406 |
. . . . . 6
⊢ (𝑔 = (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))) → (𝑔:ω–onto→(𝐴 ⊔ 1o) ↔ (𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω–onto→(𝐴 ⊔ 1o))) |
90 | 88, 89 | spcev 2821 |
. . . . 5
⊢ ((𝑛 ∈ ω ↦ if(𝑛 = ∅, (inr‘∅),
(inl‘(𝑓‘∪ 𝑛)))):ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
91 | 86, 90 | syl 14 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ 𝐴 ∧ 𝑓:ω–onto→𝐴) → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
92 | 91 | ex 114 |
. . 3
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (𝑓:ω–onto→𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))) |
93 | 92 | exlimdv 1807 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o))) |
94 | | foeq1 5406 |
. . 3
⊢ (𝑓 = 𝑔 → (𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ 𝑔:ω–onto→(𝐴 ⊔ 1o))) |
95 | 94 | cbvexv 1906 |
. 2
⊢
(∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐴 ⊔ 1o)) |
96 | 93, 95 | syl6ibr 161 |
1
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∃𝑓 𝑓:ω–onto→𝐴 → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))) |