ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucuniel GIF version

Theorem nnsucuniel 6474
Description: Given an element 𝐴 of the union of a natural number 𝐵, suc 𝐴 is an element of 𝐵 itself. The reverse direction holds for all ordinals (sucunielr 4494). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4515). (Contributed by Jim Kingdon, 13-Mar-2022.)
Assertion
Ref Expression
nnsucuniel (𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem nnsucuniel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 noel 3418 . . . . . . 7 ¬ 𝐴 ∈ ∅
2 uni0 3823 . . . . . . . 8 ∅ = ∅
32eleq2i 2237 . . . . . . 7 (𝐴 ∅ ↔ 𝐴 ∈ ∅)
41, 3mtbir 666 . . . . . 6 ¬ 𝐴
5 unieq 3805 . . . . . . 7 (𝐵 = ∅ → 𝐵 = ∅)
65eleq2d 2240 . . . . . 6 (𝐵 = ∅ → (𝐴 𝐵𝐴 ∅))
74, 6mtbiri 670 . . . . 5 (𝐵 = ∅ → ¬ 𝐴 𝐵)
87pm2.21d 614 . . . 4 (𝐵 = ∅ → (𝐴 𝐵 → suc 𝐴𝐵))
98adantl 275 . . 3 ((𝐵 ∈ ω ∧ 𝐵 = ∅) → (𝐴 𝐵 → suc 𝐴𝐵))
10 unieq 3805 . . . . . . . . . . . 12 (𝐵 = suc 𝑛 𝐵 = suc 𝑛)
1110eleq2d 2240 . . . . . . . . . . 11 (𝐵 = suc 𝑛 → (𝐴 𝐵𝐴 suc 𝑛))
1211ad2antll 488 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 𝐵𝐴 suc 𝑛))
1312biimpa 294 . . . . . . . . 9 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐴 suc 𝑛)
14 simplrl 530 . . . . . . . . . . 11 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝑛 ∈ ω)
15 nnord 4596 . . . . . . . . . . . . 13 (𝑛 ∈ ω → Ord 𝑛)
16 ordtr 4363 . . . . . . . . . . . . 13 (Ord 𝑛 → Tr 𝑛)
1715, 16syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ω → Tr 𝑛)
18 vex 2733 . . . . . . . . . . . . 13 𝑛 ∈ V
1918unisuc 4398 . . . . . . . . . . . 12 (Tr 𝑛 suc 𝑛 = 𝑛)
2017, 19sylib 121 . . . . . . . . . . 11 (𝑛 ∈ ω → suc 𝑛 = 𝑛)
2114, 20syl 14 . . . . . . . . . 10 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝑛 = 𝑛)
2221eleq2d 2240 . . . . . . . . 9 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → (𝐴 suc 𝑛𝐴𝑛))
2313, 22mpbid 146 . . . . . . . 8 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐴𝑛)
24 nnsucelsuc 6470 . . . . . . . . 9 (𝑛 ∈ ω → (𝐴𝑛 ↔ suc 𝐴 ∈ suc 𝑛))
2514, 24syl 14 . . . . . . . 8 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → (𝐴𝑛 ↔ suc 𝐴 ∈ suc 𝑛))
2623, 25mpbid 146 . . . . . . 7 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝐴 ∈ suc 𝑛)
27 simplrr 531 . . . . . . 7 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐵 = suc 𝑛)
2826, 27eleqtrrd 2250 . . . . . 6 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝐴𝐵)
2928ex 114 . . . . 5 ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 𝐵 → suc 𝐴𝐵))
3029rexlimdvaa 2588 . . . 4 (𝐵 ∈ ω → (∃𝑛 ∈ ω 𝐵 = suc 𝑛 → (𝐴 𝐵 → suc 𝐴𝐵)))
3130imp 123 . . 3 ((𝐵 ∈ ω ∧ ∃𝑛 ∈ ω 𝐵 = suc 𝑛) → (𝐴 𝐵 → suc 𝐴𝐵))
32 nn0suc 4588 . . 3 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∃𝑛 ∈ ω 𝐵 = suc 𝑛))
339, 31, 32mpjaodan 793 . 2 (𝐵 ∈ ω → (𝐴 𝐵 → suc 𝐴𝐵))
34 sucunielr 4494 . 2 (suc 𝐴𝐵𝐴 𝐵)
3533, 34impbid1 141 1 (𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  c0 3414   cuni 3796  Tr wtr 4087  Ord word 4347  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator