ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucuniel GIF version

Theorem nnsucuniel 6191
Description: Given an element 𝐴 of the union of a natural number 𝐵, suc 𝐴 is an element of 𝐵 itself. The reverse direction holds for all ordinals (sucunielr 4293). The forward direction for all ordinals implies excluded middle (ordsucunielexmid 4313). (Contributed by Jim Kingdon, 13-Mar-2022.)
Assertion
Ref Expression
nnsucuniel (𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem nnsucuniel
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 noel 3276 . . . . . . 7 ¬ 𝐴 ∈ ∅
2 uni0 3657 . . . . . . . 8 ∅ = ∅
32eleq2i 2151 . . . . . . 7 (𝐴 ∅ ↔ 𝐴 ∈ ∅)
41, 3mtbir 629 . . . . . 6 ¬ 𝐴
5 unieq 3639 . . . . . . 7 (𝐵 = ∅ → 𝐵 = ∅)
65eleq2d 2154 . . . . . 6 (𝐵 = ∅ → (𝐴 𝐵𝐴 ∅))
74, 6mtbiri 633 . . . . 5 (𝐵 = ∅ → ¬ 𝐴 𝐵)
87pm2.21d 582 . . . 4 (𝐵 = ∅ → (𝐴 𝐵 → suc 𝐴𝐵))
98adantl 271 . . 3 ((𝐵 ∈ ω ∧ 𝐵 = ∅) → (𝐴 𝐵 → suc 𝐴𝐵))
10 unieq 3639 . . . . . . . . . . . 12 (𝐵 = suc 𝑛 𝐵 = suc 𝑛)
1110eleq2d 2154 . . . . . . . . . . 11 (𝐵 = suc 𝑛 → (𝐴 𝐵𝐴 suc 𝑛))
1211ad2antll 475 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 𝐵𝐴 suc 𝑛))
1312biimpa 290 . . . . . . . . 9 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐴 suc 𝑛)
14 simplrl 502 . . . . . . . . . . 11 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝑛 ∈ ω)
15 nnord 4392 . . . . . . . . . . . . 13 (𝑛 ∈ ω → Ord 𝑛)
16 ordtr 4172 . . . . . . . . . . . . 13 (Ord 𝑛 → Tr 𝑛)
1715, 16syl 14 . . . . . . . . . . . 12 (𝑛 ∈ ω → Tr 𝑛)
18 vex 2617 . . . . . . . . . . . . 13 𝑛 ∈ V
1918unisuc 4207 . . . . . . . . . . . 12 (Tr 𝑛 suc 𝑛 = 𝑛)
2017, 19sylib 120 . . . . . . . . . . 11 (𝑛 ∈ ω → suc 𝑛 = 𝑛)
2114, 20syl 14 . . . . . . . . . 10 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝑛 = 𝑛)
2221eleq2d 2154 . . . . . . . . 9 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → (𝐴 suc 𝑛𝐴𝑛))
2313, 22mpbid 145 . . . . . . . 8 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐴𝑛)
24 nnsucelsuc 6187 . . . . . . . . 9 (𝑛 ∈ ω → (𝐴𝑛 ↔ suc 𝐴 ∈ suc 𝑛))
2514, 24syl 14 . . . . . . . 8 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → (𝐴𝑛 ↔ suc 𝐴 ∈ suc 𝑛))
2623, 25mpbid 145 . . . . . . 7 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝐴 ∈ suc 𝑛)
27 simplrr 503 . . . . . . 7 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → 𝐵 = suc 𝑛)
2826, 27eleqtrrd 2164 . . . . . 6 (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 𝐵) → suc 𝐴𝐵)
2928ex 113 . . . . 5 ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 𝐵 → suc 𝐴𝐵))
3029rexlimdvaa 2486 . . . 4 (𝐵 ∈ ω → (∃𝑛 ∈ ω 𝐵 = suc 𝑛 → (𝐴 𝐵 → suc 𝐴𝐵)))
3130imp 122 . . 3 ((𝐵 ∈ ω ∧ ∃𝑛 ∈ ω 𝐵 = suc 𝑛) → (𝐴 𝐵 → suc 𝐴𝐵))
32 nn0suc 4385 . . 3 (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∃𝑛 ∈ ω 𝐵 = suc 𝑛))
339, 31, 32mpjaodan 745 . 2 (𝐵 ∈ ω → (𝐴 𝐵 → suc 𝐴𝐵))
34 sucunielr 4293 . 2 (suc 𝐴𝐵𝐴 𝐵)
3533, 34impbid1 140 1 (𝐵 ∈ ω → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wrex 2356  c0 3272   cuni 3630  Tr wtr 3904  Ord word 4156  suc csuc 4159  ωcom 4371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-iinf 4369
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-uni 3631  df-int 3666  df-tr 3905  df-iord 4160  df-on 4162  df-suc 4165  df-iom 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator