| Step | Hyp | Ref
| Expression |
| 1 | | noel 3455 |
. . . . . . 7
⊢ ¬
𝐴 ∈
∅ |
| 2 | | uni0 3867 |
. . . . . . . 8
⊢ ∪ ∅ = ∅ |
| 3 | 2 | eleq2i 2263 |
. . . . . . 7
⊢ (𝐴 ∈ ∪ ∅ ↔ 𝐴 ∈ ∅) |
| 4 | 1, 3 | mtbir 672 |
. . . . . 6
⊢ ¬
𝐴 ∈ ∪ ∅ |
| 5 | | unieq 3849 |
. . . . . . 7
⊢ (𝐵 = ∅ → ∪ 𝐵 =
∪ ∅) |
| 6 | 5 | eleq2d 2266 |
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 ∈ ∪ 𝐵
↔ 𝐴 ∈ ∪ ∅)) |
| 7 | 4, 6 | mtbiri 676 |
. . . . 5
⊢ (𝐵 = ∅ → ¬ 𝐴 ∈ ∪ 𝐵) |
| 8 | 7 | pm2.21d 620 |
. . . 4
⊢ (𝐵 = ∅ → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) |
| 9 | 8 | adantl 277 |
. . 3
⊢ ((𝐵 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) |
| 10 | | unieq 3849 |
. . . . . . . . . . . 12
⊢ (𝐵 = suc 𝑛 → ∪ 𝐵 = ∪
suc 𝑛) |
| 11 | 10 | eleq2d 2266 |
. . . . . . . . . . 11
⊢ (𝐵 = suc 𝑛 → (𝐴 ∈ ∪ 𝐵 ↔ 𝐴 ∈ ∪ suc
𝑛)) |
| 12 | 11 | ad2antll 491 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 ∈ ∪ 𝐵 ↔ 𝐴 ∈ ∪ suc
𝑛)) |
| 13 | 12 | biimpa 296 |
. . . . . . . . 9
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐴 ∈ ∪ suc
𝑛) |
| 14 | | simplrl 535 |
. . . . . . . . . . 11
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝑛 ∈ ω) |
| 15 | | nnord 4649 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → Ord 𝑛) |
| 16 | | ordtr 4414 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑛 → Tr 𝑛) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → Tr 𝑛) |
| 18 | | vex 2766 |
. . . . . . . . . . . . 13
⊢ 𝑛 ∈ V |
| 19 | 18 | unisuc 4449 |
. . . . . . . . . . . 12
⊢ (Tr 𝑛 ↔ ∪ suc 𝑛 = 𝑛) |
| 20 | 17, 19 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ∪ suc 𝑛 = 𝑛) |
| 21 | 14, 20 | syl 14 |
. . . . . . . . . 10
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → ∪ suc 𝑛 = 𝑛) |
| 22 | 21 | eleq2d 2266 |
. . . . . . . . 9
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → (𝐴 ∈ ∪ suc
𝑛 ↔ 𝐴 ∈ 𝑛)) |
| 23 | 13, 22 | mpbid 147 |
. . . . . . . 8
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐴 ∈ 𝑛) |
| 24 | | nnsucelsuc 6558 |
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (𝐴 ∈ 𝑛 ↔ suc 𝐴 ∈ suc 𝑛)) |
| 25 | 14, 24 | syl 14 |
. . . . . . . 8
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → (𝐴 ∈ 𝑛 ↔ suc 𝐴 ∈ suc 𝑛)) |
| 26 | 23, 25 | mpbid 147 |
. . . . . . 7
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → suc 𝐴 ∈ suc 𝑛) |
| 27 | | simplrr 536 |
. . . . . . 7
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐵 = suc 𝑛) |
| 28 | 26, 27 | eleqtrrd 2276 |
. . . . . 6
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → suc 𝐴 ∈ 𝐵) |
| 29 | 28 | ex 115 |
. . . . 5
⊢ ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵)) |
| 30 | 29 | rexlimdvaa 2615 |
. . . 4
⊢ (𝐵 ∈ ω →
(∃𝑛 ∈ ω
𝐵 = suc 𝑛 → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵))) |
| 31 | 30 | imp 124 |
. . 3
⊢ ((𝐵 ∈ ω ∧
∃𝑛 ∈ ω
𝐵 = suc 𝑛) → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵)) |
| 32 | | nn0suc 4641 |
. . 3
⊢ (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∃𝑛 ∈ ω 𝐵 = suc 𝑛)) |
| 33 | 9, 31, 32 | mpjaodan 799 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) |
| 34 | | sucunielr 4547 |
. 2
⊢ (suc
𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) |
| 35 | 33, 34 | impbid1 142 |
1
⊢ (𝐵 ∈ ω → (𝐴 ∈ ∪ 𝐵
↔ suc 𝐴 ∈ 𝐵)) |