| Step | Hyp | Ref
 | Expression | 
| 1 |   | noel 3454 | 
. . . . . . 7
⊢  ¬
𝐴 ∈
∅ | 
| 2 |   | uni0 3866 | 
. . . . . . . 8
⊢ ∪ ∅ = ∅ | 
| 3 | 2 | eleq2i 2263 | 
. . . . . . 7
⊢ (𝐴 ∈ ∪ ∅ ↔ 𝐴 ∈ ∅) | 
| 4 | 1, 3 | mtbir 672 | 
. . . . . 6
⊢  ¬
𝐴 ∈ ∪ ∅ | 
| 5 |   | unieq 3848 | 
. . . . . . 7
⊢ (𝐵 = ∅ → ∪ 𝐵 =
∪ ∅) | 
| 6 | 5 | eleq2d 2266 | 
. . . . . 6
⊢ (𝐵 = ∅ → (𝐴 ∈ ∪ 𝐵
↔ 𝐴 ∈ ∪ ∅)) | 
| 7 | 4, 6 | mtbiri 676 | 
. . . . 5
⊢ (𝐵 = ∅ → ¬ 𝐴 ∈ ∪ 𝐵) | 
| 8 | 7 | pm2.21d 620 | 
. . . 4
⊢ (𝐵 = ∅ → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) | 
| 9 | 8 | adantl 277 | 
. . 3
⊢ ((𝐵 ∈ ω ∧ 𝐵 = ∅) → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) | 
| 10 |   | unieq 3848 | 
. . . . . . . . . . . 12
⊢ (𝐵 = suc 𝑛 → ∪ 𝐵 = ∪
suc 𝑛) | 
| 11 | 10 | eleq2d 2266 | 
. . . . . . . . . . 11
⊢ (𝐵 = suc 𝑛 → (𝐴 ∈ ∪ 𝐵 ↔ 𝐴 ∈ ∪ suc
𝑛)) | 
| 12 | 11 | ad2antll 491 | 
. . . . . . . . . 10
⊢ ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 ∈ ∪ 𝐵 ↔ 𝐴 ∈ ∪ suc
𝑛)) | 
| 13 | 12 | biimpa 296 | 
. . . . . . . . 9
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐴 ∈ ∪ suc
𝑛) | 
| 14 |   | simplrl 535 | 
. . . . . . . . . . 11
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝑛 ∈ ω) | 
| 15 |   | nnord 4648 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ω → Ord 𝑛) | 
| 16 |   | ordtr 4413 | 
. . . . . . . . . . . . 13
⊢ (Ord
𝑛 → Tr 𝑛) | 
| 17 | 15, 16 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ω → Tr 𝑛) | 
| 18 |   | vex 2766 | 
. . . . . . . . . . . . 13
⊢ 𝑛 ∈ V | 
| 19 | 18 | unisuc 4448 | 
. . . . . . . . . . . 12
⊢ (Tr 𝑛 ↔ ∪ suc 𝑛 = 𝑛) | 
| 20 | 17, 19 | sylib 122 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈ ω → ∪ suc 𝑛 = 𝑛) | 
| 21 | 14, 20 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → ∪ suc 𝑛 = 𝑛) | 
| 22 | 21 | eleq2d 2266 | 
. . . . . . . . 9
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → (𝐴 ∈ ∪ suc
𝑛 ↔ 𝐴 ∈ 𝑛)) | 
| 23 | 13, 22 | mpbid 147 | 
. . . . . . . 8
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐴 ∈ 𝑛) | 
| 24 |   | nnsucelsuc 6549 | 
. . . . . . . . 9
⊢ (𝑛 ∈ ω → (𝐴 ∈ 𝑛 ↔ suc 𝐴 ∈ suc 𝑛)) | 
| 25 | 14, 24 | syl 14 | 
. . . . . . . 8
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → (𝐴 ∈ 𝑛 ↔ suc 𝐴 ∈ suc 𝑛)) | 
| 26 | 23, 25 | mpbid 147 | 
. . . . . . 7
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → suc 𝐴 ∈ suc 𝑛) | 
| 27 |   | simplrr 536 | 
. . . . . . 7
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → 𝐵 = suc 𝑛) | 
| 28 | 26, 27 | eleqtrrd 2276 | 
. . . . . 6
⊢ (((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) ∧ 𝐴 ∈ ∪ 𝐵) → suc 𝐴 ∈ 𝐵) | 
| 29 | 28 | ex 115 | 
. . . . 5
⊢ ((𝐵 ∈ ω ∧ (𝑛 ∈ ω ∧ 𝐵 = suc 𝑛)) → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵)) | 
| 30 | 29 | rexlimdvaa 2615 | 
. . . 4
⊢ (𝐵 ∈ ω →
(∃𝑛 ∈ ω
𝐵 = suc 𝑛 → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵))) | 
| 31 | 30 | imp 124 | 
. . 3
⊢ ((𝐵 ∈ ω ∧
∃𝑛 ∈ ω
𝐵 = suc 𝑛) → (𝐴 ∈ ∪ 𝐵 → suc 𝐴 ∈ 𝐵)) | 
| 32 |   | nn0suc 4640 | 
. . 3
⊢ (𝐵 ∈ ω → (𝐵 = ∅ ∨ ∃𝑛 ∈ ω 𝐵 = suc 𝑛)) | 
| 33 | 9, 31, 32 | mpjaodan 799 | 
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ∪ 𝐵
→ suc 𝐴 ∈ 𝐵)) | 
| 34 |   | sucunielr 4546 | 
. 2
⊢ (suc
𝐴 ∈ 𝐵 → 𝐴 ∈ ∪ 𝐵) | 
| 35 | 33, 34 | impbid1 142 | 
1
⊢ (𝐵 ∈ ω → (𝐴 ∈ ∪ 𝐵
↔ suc 𝐴 ∈ 𝐵)) |