Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4372 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 4103 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 Tr wtr 4096 Ord word 4356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-tr 4097 df-iord 4360 |
This theorem is referenced by: ontr1 4383 ordwe 4569 dfsmo2 6278 smores2 6285 smoel 6291 tfr1onlemsucaccv 6332 tfr1onlembxssdm 6334 tfr1onlembfn 6335 tfr1onlemaccex 6339 tfr1onlemres 6340 tfrcllemsucaccv 6345 tfrcllembxssdm 6347 tfrcllembfn 6348 tfrcllemaccex 6352 tfrcllemres 6353 tfrcl 6355 ordiso2 7024 |
Copyright terms: Public domain | W3C validator |