Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4363 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 4094 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Tr wtr 4087 Ord word 4347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 |
This theorem is referenced by: ontr1 4374 ordwe 4560 dfsmo2 6266 smores2 6273 smoel 6279 tfr1onlemsucaccv 6320 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfr1onlemaccex 6327 tfr1onlemres 6328 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllembfn 6336 tfrcllemaccex 6340 tfrcllemres 6341 tfrcl 6343 ordiso2 7012 |
Copyright terms: Public domain | W3C validator |