ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr1 GIF version

Theorem ordtr1 4382
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4372 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 4103 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 14 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2146  Tr wtr 4096  Ord word 4356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-uni 3806  df-tr 4097  df-iord 4360
This theorem is referenced by:  ontr1  4383  ordwe  4569  dfsmo2  6278  smores2  6285  smoel  6291  tfr1onlemsucaccv  6332  tfr1onlembxssdm  6334  tfr1onlembfn  6335  tfr1onlemaccex  6339  tfr1onlemres  6340  tfrcllemsucaccv  6345  tfrcllembxssdm  6347  tfrcllembfn  6348  tfrcllemaccex  6352  tfrcllemres  6353  tfrcl  6355  ordiso2  7024
  Copyright terms: Public domain W3C validator