Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4356 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 4087 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Tr wtr 4080 Ord word 4340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 |
This theorem is referenced by: ontr1 4367 ordwe 4553 dfsmo2 6255 smores2 6262 smoel 6268 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfr1onlemaccex 6316 tfr1onlemres 6317 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllembfn 6325 tfrcllemaccex 6329 tfrcllemres 6330 tfrcl 6332 ordiso2 7000 |
Copyright terms: Public domain | W3C validator |