| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4424 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
| 2 | trel 4148 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 Tr wtr 4141 Ord word 4408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-tr 4142 df-iord 4412 |
| This theorem is referenced by: ontr1 4435 ordwe 4623 dfsmo2 6372 smores2 6379 smoel 6385 tfr1onlemsucaccv 6426 tfr1onlembxssdm 6428 tfr1onlembfn 6429 tfr1onlemaccex 6433 tfr1onlemres 6434 tfrcllemsucaccv 6439 tfrcllembxssdm 6441 tfrcllembfn 6442 tfrcllemaccex 6446 tfrcllemres 6447 tfrcl 6449 ordiso2 7136 |
| Copyright terms: Public domain | W3C validator |