| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4468 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
| 2 | trel 4188 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Tr wtr 4181 Ord word 4452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4456 |
| This theorem is referenced by: ontr1 4479 ordwe 4667 dfsmo2 6431 smores2 6438 smoel 6444 tfr1onlemsucaccv 6485 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfr1onlemaccex 6492 tfr1onlemres 6493 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllembfn 6501 tfrcllemaccex 6505 tfrcllemres 6506 tfrcl 6508 ordiso2 7198 |
| Copyright terms: Public domain | W3C validator |