ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr1 GIF version

Theorem ordtr1 4373
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4363 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 4094 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 14 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  Tr wtr 4087  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351
This theorem is referenced by:  ontr1  4374  ordwe  4560  dfsmo2  6266  smores2  6273  smoel  6279  tfr1onlemsucaccv  6320  tfr1onlembxssdm  6322  tfr1onlembfn  6323  tfr1onlemaccex  6327  tfr1onlemres  6328  tfrcllemsucaccv  6333  tfrcllembxssdm  6335  tfrcllembfn  6336  tfrcllemaccex  6340  tfrcllemres  6341  tfrcl  6343  ordiso2  7012
  Copyright terms: Public domain W3C validator