![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr1 | GIF version |
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.) |
Ref | Expression |
---|---|
ordtr1 | ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4258 | . 2 ⊢ (Ord 𝐶 → Tr 𝐶) | |
2 | trel 3991 | . 2 ⊢ (Tr 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (Ord 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1461 Tr wtr 3984 Ord word 4242 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-in 3041 df-ss 3048 df-uni 3701 df-tr 3985 df-iord 4246 |
This theorem is referenced by: ontr1 4269 ordwe 4448 dfsmo2 6136 smores2 6143 smoel 6149 tfr1onlemsucaccv 6190 tfr1onlembxssdm 6192 tfr1onlembfn 6193 tfr1onlemaccex 6197 tfr1onlemres 6198 tfrcllemsucaccv 6203 tfrcllembxssdm 6205 tfrcllembfn 6206 tfrcllemaccex 6210 tfrcllemres 6211 tfrcl 6213 ordiso2 6870 |
Copyright terms: Public domain | W3C validator |