ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr1 GIF version

Theorem ordtr1 4443
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4433 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 4157 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 14 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  Tr wtr 4150  Ord word 4417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-uni 3857  df-tr 4151  df-iord 4421
This theorem is referenced by:  ontr1  4444  ordwe  4632  dfsmo2  6386  smores2  6393  smoel  6399  tfr1onlemsucaccv  6440  tfr1onlembxssdm  6442  tfr1onlembfn  6443  tfr1onlemaccex  6447  tfr1onlemres  6448  tfrcllemsucaccv  6453  tfrcllembxssdm  6455  tfrcllembfn  6456  tfrcllemaccex  6460  tfrcllemres  6461  tfrcl  6463  ordiso2  7152
  Copyright terms: Public domain W3C validator