ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr1 GIF version

Theorem ordtr1 4434
Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4424 . 2 (Ord 𝐶 → Tr 𝐶)
2 trel 4148 . 2 (Tr 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
31, 2syl 14 1 (Ord 𝐶 → ((𝐴𝐵𝐵𝐶) → 𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  Tr wtr 4141  Ord word 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412
This theorem is referenced by:  ontr1  4435  ordwe  4623  dfsmo2  6372  smores2  6379  smoel  6385  tfr1onlemsucaccv  6426  tfr1onlembxssdm  6428  tfr1onlembfn  6429  tfr1onlemaccex  6433  tfr1onlemres  6434  tfrcllemsucaccv  6439  tfrcllembxssdm  6441  tfrcllembfn  6442  tfrcllemaccex  6446  tfrcllemres  6447  tfrcl  6449  ordiso2  7136
  Copyright terms: Public domain W3C validator