| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uhgr0vb | GIF version | ||
| Description: The null graph, with no vertices, is a hypergraph if and only if the edge function is empty. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 9-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgr0vb | ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2209 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 3 | 1, 2 | uhgrfm 15838 | . . 3 ⊢ (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 4 | pweq 3632 | . . . . . . . 8 ⊢ ((Vtx‘𝐺) = ∅ → 𝒫 (Vtx‘𝐺) = 𝒫 ∅) | |
| 5 | 4 | rabeqdv 2773 | . . . . . . 7 ⊢ ((Vtx‘𝐺) = ∅ → {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} = {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠}) |
| 6 | pw0ss 15848 | . . . . . . 7 ⊢ {𝑠 ∈ 𝒫 ∅ ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅ | |
| 7 | 5, 6 | eqtrdi 2258 | . . . . . 6 ⊢ ((Vtx‘𝐺) = ∅ → {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → {𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} = ∅) |
| 9 | 8 | feq3d 5438 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅)) |
| 10 | f00 5493 | . . . . 5 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ ↔ ((iEdg‘𝐺) = ∅ ∧ dom (iEdg‘𝐺) = ∅)) | |
| 11 | 10 | simplbi 274 | . . . 4 ⊢ ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶∅ → (iEdg‘𝐺) = ∅) |
| 12 | 9, 11 | biimtrdi 163 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑠 ∈ 𝒫 (Vtx‘𝐺) ∣ ∃𝑗 𝑗 ∈ 𝑠} → (iEdg‘𝐺) = ∅)) |
| 13 | 3, 12 | syl5 32 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
| 14 | simpl 109 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ 𝑊) | |
| 15 | simpr 110 | . . . . 5 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → (iEdg‘𝐺) = ∅) | |
| 16 | 14, 15 | uhgr0e 15847 | . . . 4 ⊢ ((𝐺 ∈ 𝑊 ∧ (iEdg‘𝐺) = ∅) → 𝐺 ∈ UHGraph) |
| 17 | 16 | ex 115 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
| 18 | 17 | adantr 276 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → ((iEdg‘𝐺) = ∅ → 𝐺 ∈ UHGraph)) |
| 19 | 13, 18 | impbid 129 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∃wex 1518 ∈ wcel 2180 {crab 2492 ∅c0 3471 𝒫 cpw 3629 dom cdm 4696 ⟶wf 5290 ‘cfv 5294 Vtxcvtx 15778 iEdgciedg 15779 UHGraphcuhgr 15832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-base 13004 df-edgf 15771 df-vtx 15780 df-iedg 15781 df-uhgrm 15834 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |