![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clsfval | GIF version |
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cldval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsfval | ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldval.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 13905 | . . 3 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | pwexg 4195 | . . 3 ⊢ (𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V) | |
4 | mptexg 5757 | . . 3 ⊢ (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) ∈ V) | |
5 | 2, 3, 4 | 3syl 17 | . 2 ⊢ (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) ∈ V) |
6 | unieq 3833 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
7 | 6, 1 | eqtr4di 2240 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
8 | 7 | pweqd 3595 | . . . 4 ⊢ (𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
9 | fveq2 5530 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
10 | rabeq 2744 | . . . . . 6 ⊢ ((Clsd‘𝑗) = (Clsd‘𝐽) → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) | |
11 | 9, 10 | syl 14 | . . . . 5 ⊢ (𝑗 = 𝐽 → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) |
12 | 11 | inteqd 3864 | . . . 4 ⊢ (𝑗 = 𝐽 → ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) |
13 | 8, 12 | mpteq12dv 4100 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
14 | df-cls 13994 | . . 3 ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) | |
15 | 13, 14 | fvmptg 5608 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦}) ∈ V) → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
16 | 5, 15 | mpdan 421 | 1 ⊢ (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥 ⊆ 𝑦})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 {crab 2472 Vcvv 2752 ⊆ wss 3144 𝒫 cpw 3590 ∪ cuni 3824 ∩ cint 3859 ↦ cmpt 4079 ‘cfv 5231 Topctop 13894 Clsdccld 13989 clsccl 13991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-top 13895 df-cls 13994 |
This theorem is referenced by: clsval 14008 |
Copyright terms: Public domain | W3C validator |