ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsfval GIF version

Theorem clsfval 12279
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
clsfval (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem clsfval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 12184 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4104 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 5645 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
52, 3, 43syl 17 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V)
6 unieq 3745 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1syl6eqr 2190 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 3515 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 fveq2 5421 . . . . . 6 (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽))
10 rabeq 2678 . . . . . 6 ((Clsd‘𝑗) = (Clsd‘𝐽) → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
119, 10syl 14 . . . . 5 (𝑗 = 𝐽 → {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
1211inteqd 3776 . . . 4 (𝑗 = 𝐽 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦} = {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦})
138, 12mpteq12dv 4010 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
14 df-cls 12275 . . 3 cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
1513, 14fvmptg 5497 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}) ∈ V) → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
165, 15mpdan 417 1 (𝐽 ∈ Top → (cls‘𝐽) = (𝑥 ∈ 𝒫 𝑋 {𝑦 ∈ (Clsd‘𝐽) ∣ 𝑥𝑦}))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  {crab 2420  Vcvv 2686  wss 3071  𝒫 cpw 3510   cuni 3736   cint 3771  cmpt 3989  cfv 5123  Topctop 12173  Clsdccld 12270  clsccl 12272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12174  df-cls 12275
This theorem is referenced by:  clsval  12289
  Copyright terms: Public domain W3C validator