HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqrtlti 11101 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremabslti 11102 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵))
 
Theoremabslei 11103 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   𝐵 ∈ ℝ       ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵))
 
Theoremabsvalsqi 11104 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))
 
Theoremabsvalsq2i 11105 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))
 
Theoremabscli 11106 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) ∈ ℝ
 
Theoremabsge0i 11107 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       0 ≤ (abs‘𝐴)
 
Theoremabsval2i 11108 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremabs00i 11109 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ ℂ       ((abs‘𝐴) = 0 ↔ 𝐴 = 0)
 
Theoremabsgt0api 11110 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ       (𝐴 # 0 ↔ 0 < (abs‘𝐴))
 
Theoremabsnegi 11111 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℂ       (abs‘-𝐴) = (abs‘𝐴)
 
Theoremabscji 11112 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (abs‘(∗‘𝐴)) = (abs‘𝐴)
 
Theoremreleabsi 11113 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ       (ℜ‘𝐴) ≤ (abs‘𝐴)
 
Theoremabssubi 11114 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴))
 
Theoremabsmuli 11115 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))
 
Theoremsqabsaddi 11116 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
 
Theoremsqabssubi 11117 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       ((abs‘(𝐴𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))
 
Theoremabsdivapzi 11118 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabstrii 11119 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ       (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))
 
Theoremabs3difi 11120 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ       (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵)))
 
Theoremabs3lemi 11121 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ ℂ    &   𝐵 ∈ ℂ    &   𝐶 ∈ ℂ    &   𝐷 ∈ ℝ       (((abs‘(𝐴𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶𝐵)) < (𝐷 / 2)) → (abs‘(𝐴𝐵)) < 𝐷)
 
Theoremrpsqrtcld 11122 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → (√‘𝐴) ∈ ℝ+)
 
Theoremsqrtgt0d 11123 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < (√‘𝐴))
 
Theoremabsnidd 11124 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≤ 0)       (𝜑 → (abs‘𝐴) = -𝐴)
 
Theoremleabsd 11125 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (abs‘𝐴))
 
Theoremabsred 11126 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2)))
 
Theoremresqrtcld 11127 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘𝐴) ∈ ℝ)
 
Theoremsqrtmsqd 11128 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrtsqd 11129 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtge0d 11130 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (√‘𝐴))
 
Theoremabsidd 11131 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (abs‘𝐴) = 𝐴)
 
Theoremsqrtdivd 11132 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtmuld 11133 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtsq2d 11134 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtled 11135 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtltd 11136 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqr11d 11137 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑 → (√‘𝐴) = (√‘𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremabsltd 11138 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
 
Theoremabsled 11139 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
 
Theoremabssubge0d 11140 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐵𝐴)) = (𝐵𝐴))
 
Theoremabssuble0d 11141 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐴𝐵)) = (𝐵𝐴))
 
Theoremabsdifltd 11142 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))
 
Theoremabsdifled 11143 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))
 
Theoremicodiamlt 11144 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
 
Theoremabscld 11145 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) ∈ ℝ)
 
Theoremabsvalsqd 11146 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2d 11147 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremabsge0d 11148 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (abs‘𝐴))
 
Theoremabsval2d 11149 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs00d 11150 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) = 0)       (𝜑𝐴 = 0)
 
Theoremabsne0d 11151 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ≠ 0)
 
Theoremabsrpclapd 11152 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)
 
Theoremabsnegd 11153 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscjd 11154 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremreleabsd 11155 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴))
 
Theoremabsexpd 11156 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabssubd 11157 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
 
Theoremabsmuld 11158 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
 
Theoremabsdivapd 11159 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabstrid 11160 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difd 11161 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs2dif2d 11162 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difabsd 11163 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs3difd 11164 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
 
Theoremabs3lemd 11165 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → (abs‘(𝐴𝐶)) < (𝐷 / 2))    &   (𝜑 → (abs‘(𝐶𝐵)) < (𝐷 / 2))       (𝜑 → (abs‘(𝐴𝐵)) < 𝐷)
 
Theoremqdenre 11166* The rational numbers are dense in : any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 10213. (Contributed by BJ, 15-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (abs‘(𝑥𝐴)) < 𝐵)
 
4.7.5  The maximum of two real numbers
 
Theoremmaxcom 11167 The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < )
 
Theoremmaxabsle 11168 An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
Theoremmaxleim 11169 Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
Theoremmaxabslemab 11170 Lemma for maxabs 11173. A variation of maxleim 11169- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
 
Theoremmaxabslemlub 11171 Lemma for maxabs 11173. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremmaxabslemval 11172* Lemma for maxabs 11173. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
Theoremmaxabs 11173 Maximum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
Theoremmaxcl 11174 The maximum of two real numbers is a real number. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
Theoremmaxle1 11175 The maximum of two reals is no smaller than the first real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremmaxle2 11176 The maximum of two reals is no smaller than the second real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremmaxleast 11177 The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
 
Theoremmaxleastb 11178 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremmaxleastlt 11179 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremmaxleb 11180 Equivalence of and being equal to the maximum of two reals. Lemma 3.12 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
Theoremdfabsmax 11181 Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
(𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ))
 
Theoremmaxltsup 11182 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
Theoremmax0addsup 11183 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
(𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
 
Theoremrexanre 11184* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
(𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
 
Theoremrexico 11185* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
 
Theoremmaxclpr 11186 The maximum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9256 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremrpmaxcl 11187 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
Theoremzmaxcl 11188 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℤ)
 
Theorem2zsupmax 11189 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
 
Theoremfimaxre2 11190* A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
 
Theoremnegfi 11191* The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
 
4.7.6  The minimum of two real numbers
 
Theoremmincom 11192 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
 
Theoremminmax 11193 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
 
Theoremmincl 11194 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
Theoremmin1inf 11195 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴)
 
Theoremmin2inf 11196 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵)
 
Theoremlemininf 11197 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴𝐵𝐴𝐶)))
 
Theoremltmininf 11198 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
Theoremminabs 11199 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
 
Theoremminclpr 11200 The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9256 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >