HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremabssubap0 11101 If the absolute value of a complex number is less than a real, its difference from the real is apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ ℝ ∧ (absβ€˜π΄) < 𝐡) β†’ (𝐡 βˆ’ 𝐴) # 0)
 
Theoremabssubne0 11102 If the absolute value of a complex number is less than a real, its difference from the real is nonzero. See also abssubap0 11101 which is the same with not equal changed to apart. (Contributed by NM, 2-Nov-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ ℝ ∧ (absβ€˜π΄) < 𝐡) β†’ (𝐡 βˆ’ 𝐴) β‰  0)
 
Theoremabsdiflt 11103 The absolute value of a difference and 'less than' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((absβ€˜(𝐴 βˆ’ 𝐡)) < 𝐢 ↔ ((𝐡 βˆ’ 𝐢) < 𝐴 ∧ 𝐴 < (𝐡 + 𝐢))))
 
Theoremabsdifle 11104 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ ((absβ€˜(𝐴 βˆ’ 𝐡)) ≀ 𝐢 ↔ ((𝐡 βˆ’ 𝐢) ≀ 𝐴 ∧ 𝐴 ≀ (𝐡 + 𝐢))))
 
Theoremelicc4abs 11105 Membership in a symmetric closed real interval. (Contributed by Stefan O'Rear, 16-Nov-2014.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐢 ∈ ℝ) β†’ (𝐢 ∈ ((𝐴 βˆ’ 𝐡)[,](𝐴 + 𝐡)) ↔ (absβ€˜(𝐢 βˆ’ 𝐴)) ≀ 𝐡))
 
Theoremlenegsq 11106 Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 0 ≀ 𝐡) β†’ ((𝐴 ≀ 𝐡 ∧ -𝐴 ≀ 𝐡) ↔ (𝐴↑2) ≀ (𝐡↑2)))
 
Theoremreleabs 11107 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 1-Apr-2005.)
(𝐴 ∈ β„‚ β†’ (β„œβ€˜π΄) ≀ (absβ€˜π΄))
 
Theoremrecvalap 11108 Reciprocal expressed with a real denominator. (Contributed by Jim Kingdon, 13-Aug-2021.)
((𝐴 ∈ β„‚ ∧ 𝐴 # 0) β†’ (1 / 𝐴) = ((βˆ—β€˜π΄) / ((absβ€˜π΄)↑2)))
 
Theoremabsidm 11109 The absolute value function is idempotent. (Contributed by NM, 20-Nov-2004.)
(𝐴 ∈ β„‚ β†’ (absβ€˜(absβ€˜π΄)) = (absβ€˜π΄))
 
Theoremabsgt0ap 11110 The absolute value of a number apart from zero is positive. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝐴 ∈ β„‚ β†’ (𝐴 # 0 ↔ 0 < (absβ€˜π΄)))
 
Theoremnnabscl 11111 The absolute value of a nonzero integer is a positive integer. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑁 ∈ β„€ ∧ 𝑁 β‰  0) β†’ (absβ€˜π‘) ∈ β„•)
 
Theoremabssub 11112 Swapping order of subtraction doesn't change the absolute value. (Contributed by NM, 1-Oct-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) = (absβ€˜(𝐡 βˆ’ 𝐴)))
 
Theoremabssubge0 11113 Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (absβ€˜(𝐡 βˆ’ 𝐴)) = (𝐡 βˆ’ 𝐴))
 
Theoremabssuble0 11114 Absolute value of a nonpositive difference. (Contributed by FL, 3-Jan-2008.)
((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 ≀ 𝐡) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) = (𝐡 βˆ’ 𝐴))
 
Theoremabstri 11115 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by NM, 7-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (absβ€˜(𝐴 + 𝐡)) ≀ ((absβ€˜π΄) + (absβ€˜π΅)))
 
Theoremabs3dif 11116 Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚ ∧ 𝐢 ∈ β„‚) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) ≀ ((absβ€˜(𝐴 βˆ’ 𝐢)) + (absβ€˜(𝐢 βˆ’ 𝐡))))
 
Theoremabs2dif 11117 Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((absβ€˜π΄) βˆ’ (absβ€˜π΅)) ≀ (absβ€˜(𝐴 βˆ’ 𝐡)))
 
Theoremabs2dif2 11118 Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) ≀ ((absβ€˜π΄) + (absβ€˜π΅)))
 
Theoremabs2difabs 11119 Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (absβ€˜((absβ€˜π΄) βˆ’ (absβ€˜π΅))) ≀ (absβ€˜(𝐴 βˆ’ 𝐡)))
 
Theoremrecan 11120* Cancellation law involving the real part of a complex number. (Contributed by NM, 12-May-2005.)
((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (βˆ€π‘₯ ∈ β„‚ (β„œβ€˜(π‘₯ Β· 𝐴)) = (β„œβ€˜(π‘₯ Β· 𝐡)) ↔ 𝐴 = 𝐡))
 
Theoremabsf 11121 Mapping domain and codomain of the absolute value function. (Contributed by NM, 30-Aug-2007.) (Revised by Mario Carneiro, 7-Nov-2013.)
abs:β„‚βŸΆβ„
 
Theoremabs3lem 11122 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
(((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) ∧ (𝐢 ∈ β„‚ ∧ 𝐷 ∈ ℝ)) β†’ (((absβ€˜(𝐴 βˆ’ 𝐢)) < (𝐷 / 2) ∧ (absβ€˜(𝐢 βˆ’ 𝐡)) < (𝐷 / 2)) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) < 𝐷))
 
Theoremfzomaxdiflem 11123 Lemma for fzomaxdif 11124. (Contributed by Stefan O'Rear, 6-Sep-2015.)
(((𝐴 ∈ (𝐢..^𝐷) ∧ 𝐡 ∈ (𝐢..^𝐷)) ∧ 𝐴 ≀ 𝐡) β†’ (absβ€˜(𝐡 βˆ’ 𝐴)) ∈ (0..^(𝐷 βˆ’ 𝐢)))
 
Theoremfzomaxdif 11124 A bound on the separation of two points in a half-open range. (Contributed by Stefan O'Rear, 6-Sep-2015.)
((𝐴 ∈ (𝐢..^𝐷) ∧ 𝐡 ∈ (𝐢..^𝐷)) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) ∈ (0..^(𝐷 βˆ’ 𝐢)))
 
Theoremcau3lem 11125* Lemma for cau3 11126. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 1-May-2014.)
𝑍 βŠ† β„€    &   (𝜏 β†’ πœ“)    &   ((πΉβ€˜π‘˜) = (πΉβ€˜π‘—) β†’ (πœ“ ↔ πœ’))    &   ((πΉβ€˜π‘˜) = (πΉβ€˜π‘š) β†’ (πœ“ ↔ πœƒ))    &   ((πœ‘ ∧ πœ’ ∧ πœ“) β†’ (πΊβ€˜((πΉβ€˜π‘—)𝐷(πΉβ€˜π‘˜))) = (πΊβ€˜((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—))))    &   ((πœ‘ ∧ πœƒ ∧ πœ’) β†’ (πΊβ€˜((πΉβ€˜π‘š)𝐷(πΉβ€˜π‘—))) = (πΊβ€˜((πΉβ€˜π‘—)𝐷(πΉβ€˜π‘š))))    &   ((πœ‘ ∧ (πœ“ ∧ πœƒ) ∧ (πœ’ ∧ π‘₯ ∈ ℝ)) β†’ (((πΊβ€˜((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—))) < (π‘₯ / 2) ∧ (πΊβ€˜((πΉβ€˜π‘—)𝐷(πΉβ€˜π‘š))) < (π‘₯ / 2)) β†’ (πΊβ€˜((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘š))) < π‘₯))    β‡’   (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝜏 ∧ (πΊβ€˜((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘—))) < π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝜏 ∧ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘˜)(πΊβ€˜((πΉβ€˜π‘˜)𝐷(πΉβ€˜π‘š))) < π‘₯)))
 
Theoremcau3 11126* Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of 𝑗 in the assertion, so it can be used with rexanuz 10999 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    β‡’   (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ βˆ€π‘š ∈ (β„€β‰₯β€˜π‘˜)(absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘š))) < π‘₯))
 
Theoremcau4 11127* Change the base of a Cauchy criterion. (Contributed by Mario Carneiro, 18-Mar-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   π‘Š = (β„€β‰₯β€˜π‘)    β‡’   (𝑁 ∈ 𝑍 β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ π‘Š βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯)))
 
Theoremcaubnd2 11128* A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
𝑍 = (β„€β‰₯β€˜π‘€)    β‡’   (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)((πΉβ€˜π‘˜) ∈ β„‚ ∧ (absβ€˜((πΉβ€˜π‘˜) βˆ’ (πΉβ€˜π‘—))) < π‘₯) β†’ βˆƒπ‘¦ ∈ ℝ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(absβ€˜(πΉβ€˜π‘˜)) < 𝑦)
 
Theoremamgm2 11129 Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
(((𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ (𝐡 ∈ ℝ ∧ 0 ≀ 𝐡)) β†’ (βˆšβ€˜(𝐴 Β· 𝐡)) ≀ ((𝐴 + 𝐡) / 2))
 
Theoremsqrtthi 11130 Square root theorem. Theorem I.35 of [Apostol] p. 29. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ ((βˆšβ€˜π΄) Β· (βˆšβ€˜π΄)) = 𝐴)
 
Theoremsqrtcli 11131 The square root of a nonnegative real is a real. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ (βˆšβ€˜π΄) ∈ ℝ)
 
Theoremsqrtgt0i 11132 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    β‡’   (0 < 𝐴 β†’ 0 < (βˆšβ€˜π΄))
 
Theoremsqrtmsqi 11133 Square root of square. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ (βˆšβ€˜(𝐴 Β· 𝐴)) = 𝐴)
 
Theoremsqrtsqi 11134 Square root of square. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ (βˆšβ€˜(𝐴↑2)) = 𝐴)
 
Theoremsqsqrti 11135 Square of square root. (Contributed by NM, 11-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ ((βˆšβ€˜π΄)↑2) = 𝐴)
 
Theoremsqrtge0i 11136 The square root of a nonnegative real is nonnegative. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ 0 ≀ (βˆšβ€˜π΄))
 
Theoremabsidi 11137 A nonnegative number is its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (0 ≀ 𝐴 β†’ (absβ€˜π΄) = 𝐴)
 
Theoremabsnidi 11138 A negative number is the negative of its own absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (𝐴 ≀ 0 β†’ (absβ€˜π΄) = -𝐴)
 
Theoremleabsi 11139 A real number is less than or equal to its absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ ℝ    β‡’   π΄ ≀ (absβ€˜π΄)
 
Theoremabsrei 11140 Absolute value of a real number. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    β‡’   (absβ€˜π΄) = (βˆšβ€˜(𝐴↑2))
 
Theoremsqrtpclii 11141 The square root of a positive real is a real. (Contributed by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴    β‡’   (βˆšβ€˜π΄) ∈ ℝ
 
Theoremsqrtgt0ii 11142 The square root of a positive real is positive. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 6-Sep-2013.)
𝐴 ∈ ℝ    &   0 < 𝐴    β‡’   0 < (βˆšβ€˜π΄)
 
Theoremsqrt11i 11143 The square root function is one-to-one. (Contributed by NM, 27-Jul-1999.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((0 ≀ 𝐴 ∧ 0 ≀ 𝐡) β†’ ((βˆšβ€˜π΄) = (βˆšβ€˜π΅) ↔ 𝐴 = 𝐡))
 
Theoremsqrtmuli 11144 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((0 ≀ 𝐴 ∧ 0 ≀ 𝐡) β†’ (βˆšβ€˜(𝐴 Β· 𝐡)) = ((βˆšβ€˜π΄) Β· (βˆšβ€˜π΅)))
 
Theoremsqrtmulii 11145 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    &   0 ≀ 𝐴    &   0 ≀ 𝐡    β‡’   (βˆšβ€˜(𝐴 Β· 𝐡)) = ((βˆšβ€˜π΄) Β· (βˆšβ€˜π΅))
 
Theoremsqrtmsq2i 11146 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((0 ≀ 𝐴 ∧ 0 ≀ 𝐡) β†’ ((βˆšβ€˜π΄) = 𝐡 ↔ 𝐴 = (𝐡 Β· 𝐡)))
 
Theoremsqrtlei 11147 Square root is monotonic. (Contributed by NM, 3-Aug-1999.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((0 ≀ 𝐴 ∧ 0 ≀ 𝐡) β†’ (𝐴 ≀ 𝐡 ↔ (βˆšβ€˜π΄) ≀ (βˆšβ€˜π΅)))
 
Theoremsqrtlti 11148 Square root is strictly monotonic. (Contributed by Roy F. Longton, 8-Aug-2005.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((0 ≀ 𝐴 ∧ 0 ≀ 𝐡) β†’ (𝐴 < 𝐡 ↔ (βˆšβ€˜π΄) < (βˆšβ€˜π΅)))
 
Theoremabslti 11149 Absolute value and 'less than' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((absβ€˜π΄) < 𝐡 ↔ (-𝐡 < 𝐴 ∧ 𝐴 < 𝐡))
 
Theoremabslei 11150 Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    β‡’   ((absβ€˜π΄) ≀ 𝐡 ↔ (-𝐡 ≀ 𝐴 ∧ 𝐴 ≀ 𝐡))
 
Theoremabsvalsqi 11151 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    β‡’   ((absβ€˜π΄)↑2) = (𝐴 Β· (βˆ—β€˜π΄))
 
Theoremabsvalsq2i 11152 Square of value of absolute value function. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    β‡’   ((absβ€˜π΄)↑2) = (((β„œβ€˜π΄)↑2) + ((β„‘β€˜π΄)↑2))
 
Theoremabscli 11153 Real closure of absolute value. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ β„‚    β‡’   (absβ€˜π΄) ∈ ℝ
 
Theoremabsge0i 11154 Absolute value is nonnegative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ β„‚    β‡’   0 ≀ (absβ€˜π΄)
 
Theoremabsval2i 11155 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    β‡’   (absβ€˜π΄) = (βˆšβ€˜(((β„œβ€˜π΄)↑2) + ((β„‘β€˜π΄)↑2)))
 
Theoremabs00i 11156 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
𝐴 ∈ β„‚    β‡’   ((absβ€˜π΄) = 0 ↔ 𝐴 = 0)
 
Theoremabsgt0api 11157 The absolute value of a nonzero number is positive. Remark in [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ β„‚    β‡’   (𝐴 # 0 ↔ 0 < (absβ€˜π΄))
 
Theoremabsnegi 11158 Absolute value of negative. (Contributed by NM, 2-Aug-1999.)
𝐴 ∈ β„‚    β‡’   (absβ€˜-𝐴) = (absβ€˜π΄)
 
Theoremabscji 11159 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    β‡’   (absβ€˜(βˆ—β€˜π΄)) = (absβ€˜π΄)
 
Theoremreleabsi 11160 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    β‡’   (β„œβ€˜π΄) ≀ (absβ€˜π΄)
 
Theoremabssubi 11161 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (absβ€˜(𝐴 βˆ’ 𝐡)) = (absβ€˜(𝐡 βˆ’ 𝐴))
 
Theoremabsmuli 11162 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 1-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (absβ€˜(𝐴 Β· 𝐡)) = ((absβ€˜π΄) Β· (absβ€˜π΅))
 
Theoremsqabsaddi 11163 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   ((absβ€˜(𝐴 + 𝐡))↑2) = ((((absβ€˜π΄)↑2) + ((absβ€˜π΅)↑2)) + (2 Β· (β„œβ€˜(𝐴 Β· (βˆ—β€˜π΅)))))
 
Theoremsqabssubi 11164 Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   ((absβ€˜(𝐴 βˆ’ 𝐡))↑2) = ((((absβ€˜π΄)↑2) + ((absβ€˜π΅)↑2)) βˆ’ (2 Β· (β„œβ€˜(𝐴 Β· (βˆ—β€˜π΅)))))
 
Theoremabsdivapzi 11165 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (𝐡 # 0 β†’ (absβ€˜(𝐴 / 𝐡)) = ((absβ€˜π΄) / (absβ€˜π΅)))
 
Theoremabstrii 11166 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. This is Metamath 100 proof #91. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    β‡’   (absβ€˜(𝐴 + 𝐡)) ≀ ((absβ€˜π΄) + (absβ€˜π΅))
 
Theoremabs3difi 11167 Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    β‡’   (absβ€˜(𝐴 βˆ’ 𝐡)) ≀ ((absβ€˜(𝐴 βˆ’ 𝐢)) + (absβ€˜(𝐢 βˆ’ 𝐡)))
 
Theoremabs3lemi 11168 Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.)
𝐴 ∈ β„‚    &   π΅ ∈ β„‚    &   πΆ ∈ β„‚    &   π· ∈ ℝ    β‡’   (((absβ€˜(𝐴 βˆ’ 𝐢)) < (𝐷 / 2) ∧ (absβ€˜(𝐢 βˆ’ 𝐡)) < (𝐷 / 2)) β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) < 𝐷)
 
Theoremrpsqrtcld 11169 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    β‡’   (πœ‘ β†’ (βˆšβ€˜π΄) ∈ ℝ+)
 
Theoremsqrtgt0d 11170 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    β‡’   (πœ‘ β†’ 0 < (βˆšβ€˜π΄))
 
Theoremabsnidd 11171 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ 0)    β‡’   (πœ‘ β†’ (absβ€˜π΄) = -𝐴)
 
Theoremleabsd 11172 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    β‡’   (πœ‘ β†’ 𝐴 ≀ (absβ€˜π΄))
 
Theoremabsred 11173 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    β‡’   (πœ‘ β†’ (absβ€˜π΄) = (βˆšβ€˜(𝐴↑2)))
 
Theoremresqrtcld 11174 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    β‡’   (πœ‘ β†’ (βˆšβ€˜π΄) ∈ ℝ)
 
Theoremsqrtmsqd 11175 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    β‡’   (πœ‘ β†’ (βˆšβ€˜(𝐴 Β· 𝐴)) = 𝐴)
 
Theoremsqrtsqd 11176 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    β‡’   (πœ‘ β†’ (βˆšβ€˜(𝐴↑2)) = 𝐴)
 
Theoremsqrtge0d 11177 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    β‡’   (πœ‘ β†’ 0 ≀ (βˆšβ€˜π΄))
 
Theoremabsidd 11178 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    β‡’   (πœ‘ β†’ (absβ€˜π΄) = 𝐴)
 
Theoremsqrtdivd 11179 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    β‡’   (πœ‘ β†’ (βˆšβ€˜(𝐴 / 𝐡)) = ((βˆšβ€˜π΄) / (βˆšβ€˜π΅)))
 
Theoremsqrtmuld 11180 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    β‡’   (πœ‘ β†’ (βˆšβ€˜(𝐴 Β· 𝐡)) = ((βˆšβ€˜π΄) Β· (βˆšβ€˜π΅)))
 
Theoremsqrtsq2d 11181 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    β‡’   (πœ‘ β†’ ((βˆšβ€˜π΄) = 𝐡 ↔ 𝐴 = (𝐡↑2)))
 
Theoremsqrtled 11182 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ (βˆšβ€˜π΄) ≀ (βˆšβ€˜π΅)))
 
Theoremsqrtltd 11183 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    β‡’   (πœ‘ β†’ (𝐴 < 𝐡 ↔ (βˆšβ€˜π΄) < (βˆšβ€˜π΅)))
 
Theoremsqr11d 11184 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐴)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐡)    &   (πœ‘ β†’ (βˆšβ€˜π΄) = (βˆšβ€˜π΅))    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremabsltd 11185 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ ((absβ€˜π΄) < 𝐡 ↔ (-𝐡 < 𝐴 ∧ 𝐴 < 𝐡)))
 
Theoremabsled 11186 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ ((absβ€˜π΄) ≀ 𝐡 ↔ (-𝐡 ≀ 𝐴 ∧ 𝐴 ≀ 𝐡)))
 
Theoremabssubge0d 11187 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    β‡’   (πœ‘ β†’ (absβ€˜(𝐡 βˆ’ 𝐴)) = (𝐡 βˆ’ 𝐴))
 
Theoremabssuble0d 11188 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    β‡’   (πœ‘ β†’ (absβ€˜(𝐴 βˆ’ 𝐡)) = (𝐡 βˆ’ 𝐴))
 
Theoremabsdifltd 11189 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    β‡’   (πœ‘ β†’ ((absβ€˜(𝐴 βˆ’ 𝐡)) < 𝐢 ↔ ((𝐡 βˆ’ 𝐢) < 𝐴 ∧ 𝐴 < (𝐡 + 𝐢))))
 
Theoremabsdifled 11190 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    β‡’   (πœ‘ β†’ ((absβ€˜(𝐴 βˆ’ 𝐡)) ≀ 𝐢 ↔ ((𝐡 βˆ’ 𝐢) ≀ 𝐴 ∧ 𝐴 ≀ (𝐡 + 𝐢))))
 
Theoremicodiamlt 11191 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ) ∧ (𝐢 ∈ (𝐴[,)𝐡) ∧ 𝐷 ∈ (𝐴[,)𝐡))) β†’ (absβ€˜(𝐢 βˆ’ 𝐷)) < (𝐡 βˆ’ 𝐴))
 
Theoremabscld 11192 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (absβ€˜π΄) ∈ ℝ)
 
Theoremabsvalsqd 11193 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ ((absβ€˜π΄)↑2) = (𝐴 Β· (βˆ—β€˜π΄)))
 
Theoremabsvalsq2d 11194 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ ((absβ€˜π΄)↑2) = (((β„œβ€˜π΄)↑2) + ((β„‘β€˜π΄)↑2)))
 
Theoremabsge0d 11195 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ 0 ≀ (absβ€˜π΄))
 
Theoremabsval2d 11196 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (absβ€˜π΄) = (βˆšβ€˜(((β„œβ€˜π΄)↑2) + ((β„‘β€˜π΄)↑2))))
 
Theoremabs00d 11197 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ (absβ€˜π΄) = 0)    β‡’   (πœ‘ β†’ 𝐴 = 0)
 
Theoremabsne0d 11198 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  0)    β‡’   (πœ‘ β†’ (absβ€˜π΄) β‰  0)
 
Theoremabsrpclapd 11199 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 # 0)    β‡’   (πœ‘ β†’ (absβ€˜π΄) ∈ ℝ+)
 
Theoremabsnegd 11200 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    β‡’   (πœ‘ β†’ (absβ€˜-𝐴) = (absβ€˜π΄))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >