![]() |
Intuitionistic Logic Explorer Theorem List (p. 112 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | renegd 11101 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
Theorem | imnegd 11102 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
Theorem | cjnegd 11103 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
Theorem | addcjd 11104 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
Theorem | cjexpd 11105 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
Theorem | readdd 11106 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
Theorem | imaddd 11107 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
Theorem | resubd 11108 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
Theorem | imsubd 11109 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
Theorem | remuld 11110 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | immuld 11111 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
Theorem | cjaddd 11112 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
Theorem | cjmuld 11113 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
Theorem | ipcnd 11114 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | cjdivapd 11115 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
Theorem | rered 11116 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
Theorem | reim0d 11117 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
Theorem | cjred 11118 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
Theorem | remul2d 11119 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
Theorem | immul2d 11120 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
Theorem | redivapd 11121 | Real part of a division. Related to remul2 11020. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
Theorem | imdivapd 11122 | Imaginary part of a division. Related to remul2 11020. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
Theorem | crred 11123 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
Theorem | crimd 11124 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
Theorem | cnreim 11125 | Complex apartness in terms of real and imaginary parts. See also apreim 8624 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)))) | ||
Theorem | caucvgrelemrec 11126* | Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (℩𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴)) | ||
Theorem | caucvgrelemcau 11127* | Lemma for caucvgre 11128. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | ||
Theorem | caucvgre 11128* |
Convergence of real sequences.
A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 19-Jul-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | cvg1nlemcxze 11129 | Lemma for cvg1n 11133. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸) ⇒ ⊢ (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)) | ||
Theorem | cvg1nlemf 11130* | Lemma for cvg1n 11133. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) | ||
Theorem | cvg1nlemcau 11131* | Lemma for cvg1n 11133. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) | ||
Theorem | cvg1nlemres 11132* | Lemma for cvg1n 11133. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | cvg1n 11133* |
Convergence of real sequences.
This is a version of caucvgre 11128 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | uzin2 11134 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
Theorem | rexanuz 11135* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | rexfiuz 11136* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexuz3 11137* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexanuz2 11138* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | r19.29uz 11139* | A version of 19.29 1631 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
Theorem | r19.2uz 11140* | A version of r19.2m 3534 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
Theorem | recvguniqlem 11141 | Lemma for recvguniq 11142. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) & ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) ⇒ ⊢ (𝜑 → ⊥) | ||
Theorem | recvguniq 11142* | Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹‘𝑘) + 𝑥))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹‘𝑘) + 𝑥))) ⇒ ⊢ (𝜑 → 𝐿 = 𝑀) | ||
Syntax | csqrt 11143 | Extend class notation to include square root of a complex number. |
class √ | ||
Syntax | cabs 11144 | Extend class notation to include a function for the absolute value (modulus) of a complex number. |
class abs | ||
Definition | df-rsqrt 11145* |
Define a function whose value is the square root of a nonnegative real
number.
Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root. (Contributed by Jim Kingdon, 23-Aug-2020.) |
⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | ||
Definition | df-abs 11146 | Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.) |
⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
Theorem | sqrtrval 11147* | Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) | ||
Theorem | absval 11148 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
Theorem | rennim 11149 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
Theorem | sqrt0rlem 11150 | Lemma for sqrt0 11151. (Contributed by Jim Kingdon, 26-Aug-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0) | ||
Theorem | sqrt0 11151 | Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ (√‘0) = 0 | ||
Theorem | resqrexlem1arp 11152 | Lemma for resqrex 11173. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10538 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) | ||
Theorem | resqrexlemp1rp 11153* | Lemma for resqrex 11173. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10538 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) | ||
Theorem | resqrexlemf 11154* | Lemma for resqrex 11173. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | ||
Theorem | resqrexlemf1 11155* | Lemma for resqrex 11173. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | ||
Theorem | resqrexlemfp1 11156* | Lemma for resqrex 11173. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) | ||
Theorem | resqrexlemover 11157* | Lemma for resqrex 11173. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) | ||
Theorem | resqrexlemdec 11158* | Lemma for resqrex 11173. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemdecn 11159* | Lemma for resqrex 11173. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemlo 11160* | Lemma for resqrex 11173. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemcalc1 11161* | Lemma for resqrex 11173. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹‘𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹‘𝑁)↑2)))) | ||
Theorem | resqrexlemcalc2 11162* | Lemma for resqrex 11173. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹‘𝑁)↑2) − 𝐴) / 4)) | ||
Theorem | resqrexlemcalc3 11163* | Lemma for resqrex 11173. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
Theorem | resqrexlemnmsq 11164* | Lemma for resqrex 11173. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
Theorem | resqrexlemnm 11165* | Lemma for resqrex 11173. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝑁) − (𝐹‘𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1)))) | ||
Theorem | resqrexlemcvg 11166* | Lemma for resqrex 11173. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | resqrexlemgt0 11167* | Lemma for resqrex 11173. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → 0 ≤ 𝐿) | ||
Theorem | resqrexlemoverl 11168* | Lemma for resqrex 11173. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐿 ≤ (𝐹‘𝐾)) | ||
Theorem | resqrexlemglsq 11169* | Lemma for resqrex 11173. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺‘𝑘) + 𝑒))) | ||
Theorem | resqrexlemga 11170* | Lemma for resqrex 11173. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺‘𝑘) + 𝑒))) | ||
Theorem | resqrexlemsqa 11171* | Lemma for resqrex 11173. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → (𝐿↑2) = 𝐴) | ||
Theorem | resqrexlemex 11172* | Lemma for resqrex 11173. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | resqrex 11173* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | rsqrmo 11174* | Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
Theorem | rersqreu 11175* | Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
Theorem | resqrtcl 11176 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
Theorem | rersqrtthlem 11177 | Lemma for resqrtth 11178. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴))) | ||
Theorem | resqrtth 11178 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | remsqsqrt 11179 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqrtge0 11180 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | ||
Theorem | sqrtgt0 11181 | The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | ||
Theorem | sqrtmul 11182 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
Theorem | sqrtle 11183 | Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
Theorem | sqrtlt 11184 | Square root is strictly monotonic. Closed form of sqrtlti 11284. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
Theorem | sqrt11ap 11185 | Analogue to sqrt11 11186 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) # (√‘𝐵) ↔ 𝐴 # 𝐵)) | ||
Theorem | sqrt11 11186 | The square root function is one-to-one. Also see sqrt11ap 11185 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sqrt00 11187 | A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | rpsqrtcl 11188 | The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.) |
⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | ||
Theorem | sqrtdiv 11189 | Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) | ||
Theorem | sqrtsq2 11190 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) | ||
Theorem | sqrtsq 11191 | Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | ||
Theorem | sqrtmsq 11192 | Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
Theorem | sqrt1 11193 | The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.) |
⊢ (√‘1) = 1 | ||
Theorem | sqrt4 11194 | The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.) |
⊢ (√‘4) = 2 | ||
Theorem | sqrt9 11195 | The square root of 9 is 3. (Contributed by NM, 11-May-2004.) |
⊢ (√‘9) = 3 | ||
Theorem | sqrt2gt1lt2 11196 | The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ (1 < (√‘2) ∧ (√‘2) < 2) | ||
Theorem | absneg 11197 | Absolute value of negative. (Contributed by NM, 27-Feb-2005.) |
⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
Theorem | abscl 11198 | Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | ||
Theorem | abscj 11199 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
Theorem | absvalsq 11200 | Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |