Theorem List for Intuitionistic Logic Explorer - 11101-11200 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | wrdeq 11101 |
Equality theorem for the set of words. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝑆 = 𝑇 → Word 𝑆 = Word 𝑇) |
| |
| Theorem | wrdeqi 11102 |
Equality theorem for the set of words, inference form. (Contributed by
AV, 23-May-2021.)
|
| ⊢ 𝑆 = 𝑇 ⇒ ⊢ Word 𝑆 = Word 𝑇 |
| |
| Theorem | iswrddm0 11103 |
A function with empty domain is a word. (Contributed by AV,
13-Oct-2018.)
|
| ⊢ (𝑊:∅⟶𝑆 → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrd0 11104 |
The empty set is a word (the empty word, frequently denoted ε in
this context). This corresponds to the definition in Section 9.1 of
[AhoHopUll] p. 318. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 13-May-2020.)
|
| ⊢ ∅ ∈ Word 𝑆 |
| |
| Theorem | 0wrd0 11105 |
The empty word is the only word over an empty alphabet. (Contributed by
AV, 25-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word ∅ ↔ 𝑊 = ∅) |
| |
| Theorem | ffz0iswrdnn0 11106 |
A sequence with zero-based indices is a word. (Contributed by AV,
31-Jan-2018.) (Proof shortened by AV, 13-Oct-2018.) (Proof shortened by
JJ, 18-Nov-2022.)
|
| ⊢ ((𝑊:(0...𝐿)⟶𝑆 ∧ 𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆) |
| |
| Theorem | wrdsymb 11107 |
A word is a word over the symbols it consists of. (Contributed by AV,
1-Dec-2022.)
|
| ⊢ (𝑆 ∈ Word 𝐴 → 𝑆 ∈ Word (𝑆 “ (0..^(♯‘𝑆)))) |
| |
| Theorem | nfwrd 11108 |
Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ Ⅎ𝑥𝑆 ⇒ ⊢ Ⅎ𝑥Word 𝑆 |
| |
| Theorem | csbwrdg 11109* |
Class substitution for the symbols of a word. (Contributed by Alexander
van der Vekens, 15-Jul-2018.)
|
| ⊢ (𝑆 ∈ 𝑉 → ⦋𝑆 / 𝑥⦌Word 𝑥 = Word 𝑆) |
| |
| Theorem | wrdnval 11110* |
Words of a fixed length are mappings from a fixed half-open integer
interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
(Proof shortened by AV, 13-May-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉 ↑𝑚 (0..^𝑁))) |
| |
| Theorem | wrdmap 11111 |
Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
|
| ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ↔ 𝑊 ∈ (𝑉 ↑𝑚 (0..^𝑁)))) |
| |
| Theorem | wrdsymb0 11112 |
A symbol at a position "outside" of a word. (Contributed by
Alexander van
der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊‘𝐼) = ∅)) |
| |
| Theorem | wrdlenge1n0 11113 |
A word with length at least 1 is not empty. (Contributed by AV,
14-Oct-2018.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ 1 ≤
(♯‘𝑊))) |
| |
| Theorem | len0nnbi 11114 |
The length of a word is a positive integer iff the word is not empty.
(Contributed by AV, 22-Mar-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑆 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈
ℕ)) |
| |
| Theorem | wrdlenge2n0 11115 |
A word with length at least 2 is not empty. (Contributed by AV,
18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅) |
| |
| Theorem | wrdsymb1 11116 |
The first symbol of a nonempty word over an alphabet belongs to the
alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | wrdlen1 11117* |
A word of length 1 starts with a symbol. (Contributed by AV,
20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ∃𝑣 ∈ 𝑉 (𝑊‘0) = 𝑣) |
| |
| Theorem | fstwrdne 11118 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | fstwrdne0 11119 |
The first symbol of a nonempty word is element of the alphabet for the
word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (𝑊‘0) ∈ 𝑉) |
| |
| Theorem | eqwrd 11120* |
Two words are equal iff they have the same length and the same symbol at
each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ,
30-Dec-2023.)
|
| ⊢ ((𝑈 ∈ Word 𝑆 ∧ 𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈‘𝑖) = (𝑊‘𝑖)))) |
| |
| Theorem | elovmpowrd 11121* |
Implications for the value of an operation defined by the maps-to
notation with a class abstraction of words as a result having an
element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and
𝑦. (Contributed by Alexander van der
Vekens, 15-Jul-2018.)
|
| ⊢ 𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣 ∣ 𝜑}) ⇒ ⊢ (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉)) |
| |
| Theorem | wrdred1 11122 |
A word truncated by a symbol is a word. (Contributed by AV,
29-Jan-2021.)
|
| ⊢ (𝐹 ∈ Word 𝑆 → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word
𝑆) |
| |
| Theorem | wrdred1hash 11123 |
The length of a word truncated by a symbol. (Contributed by Alexander van
der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
|
| ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾
(0..^((♯‘𝐹)
− 1)))) = ((♯‘𝐹) − 1)) |
| |
| 4.7.2 Last symbol of a word
|
| |
| Syntax | clsw 11124 |
Extend class notation with the Last Symbol of a word.
|
| class lastS |
| |
| Definition | df-lsw 11125 |
Extract the last symbol of a word. May be not meaningful for other sets
which are not words. The name lastS (as
abbreviation of "lastSymbol")
is a compromise between usually used names for corresponding functions in
computer programs (as last() or lastChar()), the terminology used for
words in set.mm ("symbol" instead of "character") and
brevity ("lastS" is
shorter than "lastChar" and "lastSymbol"). Labels of
theorems about last
symbols of a word will contain the abbreviation "lsw" (Last
Symbol of a
Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
|
| ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
| |
| Theorem | lswwrd 11126 |
Extract the last symbol of a word. (Contributed by Alexander van der
Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| |
| Theorem | lsw0 11127 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV,
2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅) |
| |
| Theorem | lsw0g 11128 |
The last symbol of an empty word does not exist. (Contributed by
Alexander van der Vekens, 11-Nov-2018.)
|
| ⊢ (lastS‘∅) =
∅ |
| |
| Theorem | lsw1 11129 |
The last symbol of a word of length 1 is the first symbol of this word.
(Contributed by Alexander van der Vekens, 19-Mar-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) |
| |
| Theorem | lswcl 11130 |
Closure of the last symbol: the last symbol of a nonempty word belongs to
the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉) |
| |
| Theorem | lswex 11131 |
Existence of the last symbol. The last symbol of a word is a set. See
lsw0g 11128 or lswcl 11130 if you want more specific results
for empty or
nonempty words, respectively. (Contributed by Jim Kingdon,
27-Dec-2025.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V) |
| |
| Theorem | lswlgt0cl 11132 |
The last symbol of a nonempty word is an element of the alphabet for the
word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (lastS‘𝑊) ∈ 𝑉) |
| |
| 4.7.3 Concatenations of words
|
| |
| Syntax | cconcat 11133 |
Syntax for the concatenation operator.
|
| class ++ |
| |
| Definition | df-concat 11134* |
Define the concatenation operator which combines two words. Definition
in Section 9.1 of [AhoHopUll] p. 318.
(Contributed by FL, 14-Jan-2014.)
(Revised by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| |
| Theorem | ccatfvalfi 11135* |
Value of the concatenation operator. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈
(0..^(♯‘𝑆)),
(𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| |
| Theorem | ccatcl 11136 |
The concatenation of two words is a word. (Contributed by FL,
2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof
shortened by AV, 29-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) |
| |
| Theorem | ccatclab 11137 |
The concatenation of words over two sets is a word over the union of
those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴 ∪ 𝐵)) |
| |
| Theorem | ccatlen 11138 |
The length of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) |
| |
| Theorem | ccat0 11139 |
The concatenation of two words is empty iff the two words are empty.
(Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅))) |
| |
| Theorem | ccatval1 11140 |
Value of a symbol in the left half of a concatenated word. (Contributed
by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro,
22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ,
18-Jan-2024.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
| |
| Theorem | ccatval2 11141 |
Value of a symbol in the right half of a concatenated word.
(Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario
Carneiro, 22-Sep-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆)))) |
| |
| Theorem | ccatval3 11142 |
Value of a symbol in the right half of a concatenated word, using an
index relative to the subword. (Contributed by Stefan O'Rear,
16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇‘𝐼)) |
| |
| Theorem | elfzelfzccat 11143 |
An element of a finite set of sequential integers up to the length of a
word is an element of an extended finite set of sequential integers up to
the length of a concatenation of this word with another word.
(Contributed by Alexander van der Vekens, 28-Mar-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
| |
| Theorem | ccatvalfn 11144 |
The concatenation of two words is a function over the half-open integer
range having the sum of the lengths of the word as length. (Contributed
by Alexander van der Vekens, 30-Mar-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵)))) |
| |
| Theorem | ccatsymb 11145 |
The symbol at a given position in a concatenated word. (Contributed by
AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴‘𝐼), (𝐵‘(𝐼 − (♯‘𝐴))))) |
| |
| Theorem | ccatfv0 11146 |
The first symbol of a concatenation of two words is the first symbol of
the first word if the first word is not empty. (Contributed by Alexander
van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
| |
| Theorem | ccatval1lsw 11147 |
The last symbol of the left (nonempty) half of a concatenated word.
(Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴)) |
| |
| Theorem | ccatval21sw 11148 |
The first symbol of the right (nonempty) half of a concatenated word.
(Contributed by AV, 23-Apr-2022.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0)) |
| |
| Theorem | ccatlid 11149 |
Concatenation of a word by the empty word on the left. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ (𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆) |
| |
| Theorem | ccatrid 11150 |
Concatenation of a word by the empty word on the right. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ (𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆) |
| |
| Theorem | ccatass 11151 |
Associative law for concatenation of words. (Contributed by Stefan
O'Rear, 15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈))) |
| |
| Theorem | ccatrn 11152 |
The range of a concatenated word. (Contributed by Stefan O'Rear,
15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇)) |
| |
| Theorem | ccatidid 11153 |
Concatenation of the empty word by the empty word. (Contributed by AV,
26-Mar-2022.)
|
| ⊢ (∅ ++ ∅) =
∅ |
| |
| Theorem | lswccatn0lsw 11154 |
The last symbol of a word concatenated with a nonempty word is the last
symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof
shortened by AV, 1-May-2020.)
|
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) |
| |
| Theorem | lswccat0lsw 11155 |
The last symbol of a word concatenated with the empty word is the last
symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened
by AV, 1-May-2020.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘(𝑊 ++ ∅)) = (lastS‘𝑊)) |
| |
| 4.7.4 Singleton words
|
| |
| Syntax | cs1 11156 |
Syntax for the singleton word constructor.
|
| class 〈“𝐴”〉 |
| |
| Definition | df-s1 11157 |
Define the canonical injection from symbols to words. Although not
required, 𝐴 should usually be a set. Otherwise,
the singleton word
〈“𝐴”〉 would be the singleton
word consisting of the empty set, see
s1prc 11164, and not, as maybe expected, the empty word.
(Contributed by
Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} |
| |
| Theorem | s1val 11158 |
Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → 〈“𝐴”〉 = {〈0, 𝐴〉}) |
| |
| Theorem | s1rn 11159 |
The range of a singleton word. (Contributed by Mario Carneiro,
18-Jul-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → ran 〈“𝐴”〉 = {𝐴}) |
| |
| Theorem | s1eq 11160 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝐴 = 𝐵 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| |
| Theorem | s1eqd 11161 |
Equality theorem for a singleton word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 = 〈“𝐵”〉) |
| |
| Theorem | s1cl 11162 |
A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV,
23-Nov-2018.)
|
| ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 ∈ Word 𝐵) |
| |
| Theorem | s1cld 11163 |
A singleton word is a word. (Contributed by Mario Carneiro,
26-Feb-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 〈“𝐴”〉 ∈ Word 𝐵) |
| |
| Theorem | s1prc 11164 |
Value of a singleton word if the symbol is a proper class. (Contributed
by AV, 26-Mar-2022.)
|
| ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 =
〈“∅”〉) |
| |
| Theorem | s1leng 11165 |
Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
(Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝑉 → (♯‘〈“𝐴”〉) =
1) |
| |
| Theorem | s1dmg 11166 |
The domain of a singleton word is a singleton. (Contributed by AV,
9-Jan-2020.)
|
| ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
| |
| Theorem | s1fv 11167 |
Sole symbol of a singleton word. (Contributed by Stefan O'Rear,
15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| |
| Theorem | lsws1 11168 |
The last symbol of a singleton word is its symbol. (Contributed by AV,
22-Oct-2018.)
|
| ⊢ (𝐴 ∈ 𝑉 → (lastS‘〈“𝐴”〉) = 𝐴) |
| |
| Theorem | eqs1 11169 |
A word of length 1 is a singleton word. (Contributed by Stefan O'Rear,
23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = 〈“(𝑊‘0)”〉) |
| |
| Theorem | wrdl1exs1 11170* |
A word of length 1 is a singleton word. (Contributed by AV,
24-Jan-2021.)
|
| ⊢ ((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 1) → ∃𝑠 ∈ 𝑆 𝑊 = 〈“𝑠”〉) |
| |
| Theorem | wrdl1s1 11171 |
A word of length 1 is a singleton word consisting of the first symbol of
the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV,
14-Oct-2018.)
|
| ⊢ (𝑆 ∈ 𝑉 → (𝑊 = 〈“𝑆”〉 ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆))) |
| |
| Theorem | s111 11172 |
The singleton word function is injective. (Contributed by Mario Carneiro,
1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) → (〈“𝑆”〉 = 〈“𝑇”〉 ↔ 𝑆 = 𝑇)) |
| |
| 4.7.5 Concatenations with singleton
words
|
| |
| Theorem | ccatws1cl 11173 |
The concatenation of a word with a singleton word is a word. (Contributed
by Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → (𝑊 ++ 〈“𝑋”〉) ∈ Word 𝑉) |
| |
| Theorem | ccat2s1cl 11174 |
The concatenation of two singleton words is a word. (Contributed by
Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (〈“𝑋”〉 ++ 〈“𝑌”〉) ∈ Word
𝑉) |
| |
| Theorem | ccatws1leng 11175 |
The length of the concatenation of a word with a singleton word.
(Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV,
4-Mar-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑌) → (♯‘(𝑊 ++ 〈“𝑋”〉)) = ((♯‘𝑊) + 1)) |
| |
| Theorem | ccatws1lenp1bg 11176 |
The length of a word is 𝑁 iff the length of the concatenation
of the
word with a singleton word is 𝑁 + 1. (Contributed by AV,
4-Mar-2022.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑌 ∧ 𝑁 ∈ ℕ0) →
((♯‘(𝑊 ++
〈“𝑋”〉)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁)) |
| |
| Theorem | ccatw2s1cl 11177 |
The concatenation of a word with two singleton words is a word.
(Contributed by Alexander van der Vekens, 22-Sep-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉) ∈ Word
𝑉) |
| |
| Theorem | ccats1val1g 11178 |
Value of a symbol in the left half of a word concatenated with a single
symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised
by JJ, 20-Jan-2024.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑌 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = (𝑊‘𝐼)) |
| |
| Theorem | ccats1val2 11179 |
Value of the symbol concatenated with a word. (Contributed by Alexander
van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der
Vekens, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉 ∧ 𝐼 = (♯‘𝑊)) → ((𝑊 ++ 〈“𝑆”〉)‘𝐼) = 𝑆) |
| |
| Theorem | ccat1st1st 11180 |
The first symbol of a word concatenated with its first symbol is the first
symbol of the word. This theorem holds even if 𝑊 is the empty word.
(Contributed by AV, 26-Mar-2022.)
|
| ⊢ (𝑊 ∈ Word 𝑉 → ((𝑊 ++ 〈“(𝑊‘0)”〉)‘0) = (𝑊‘0)) |
| |
| Theorem | ccatws1ls 11181 |
The last symbol of the concatenation of a word with a singleton word is
the symbol of the singleton word. (Contributed by AV, 29-Sep-2018.)
(Proof shortened by AV, 14-Oct-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑉) → ((𝑊 ++ 〈“𝑋”〉)‘(♯‘𝑊)) = 𝑋) |
| |
| Theorem | lswccats1 11182 |
The last symbol of a word concatenated with a singleton word is the symbol
of the singleton word. (Contributed by AV, 6-Aug-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (lastS‘(𝑊 ++ 〈“𝑆”〉)) = 𝑆) |
| |
| Theorem | lswccats1fst 11183 |
The last symbol of a nonempty word concatenated with its first symbol is
the first symbol. (Contributed by AV, 28-Jun-2018.) (Proof shortened by
AV, 1-May-2020.)
|
| ⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
| |
| Theorem | ccatw2s1p2 11184 |
Extract the second of two single symbols concatenated with a word.
(Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened
by AV, 1-May-2020.)
|
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑊 ++ 〈“𝑋”〉) ++ 〈“𝑌”〉)‘(𝑁 + 1)) = 𝑌) |
| |
| 4.7.6 Subwords/substrings
|
| |
| Syntax | csubstr 11185 |
Syntax for the subword operator.
|
| class substr |
| |
| Definition | df-substr 11186* |
Define an operation which extracts portions (called subwords or
substrings) of words. Definition in Section 9.1 of [AhoHopUll]
p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
| |
| Theorem | fzowrddc 11187 |
Decidability of whether a range of integers is a subset of a word's
domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
DECID (𝐹..^𝐿) ⊆ dom 𝑆) |
| |
| Theorem | swrdval 11188* |
Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
|
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅)) |
| |
| Theorem | swrd00g 11189 |
A zero length substring. (Contributed by Stefan O'Rear,
27-Aug-2015.)
|
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑋 ∈ ℤ) → (𝑆 substr 〈𝑋, 𝑋〉) = ∅) |
| |
| Theorem | swrdclg 11190 |
Closure of the subword extractor. (Contributed by Stefan O'Rear,
16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr 〈𝐹, 𝐿〉) ∈ Word 𝐴) |
| |
| Theorem | swrdval2 11191* |
Value of the subword extractor in its intended domain. (Contributed by
Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) = (𝑥 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑆‘(𝑥 + 𝐹)))) |
| |
| Theorem | swrdlen 11192 |
Length of an extracted subword. (Contributed by Stefan O'Rear,
16-Aug-2015.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) →
(♯‘(𝑆 substr
〈𝐹, 𝐿〉)) = (𝐿 − 𝐹)) |
| |
| Theorem | swrdfv 11193 |
A symbol in an extracted subword, indexed using the subword's indices.
(Contributed by Stefan O'Rear, 16-Aug-2015.)
|
| ⊢ (((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿 − 𝐹))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘𝑋) = (𝑆‘(𝑋 + 𝐹))) |
| |
| Theorem | swrdfv0 11194 |
The first symbol in an extracted subword. (Contributed by AV,
27-Apr-2022.)
|
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr 〈𝐹, 𝐿〉)‘0) = (𝑆‘𝐹)) |
| |
| Theorem | swrdf 11195 |
A subword of a word is a function from a half-open range of nonnegative
integers of the same length as the subword to the set of symbols for the
original word. (Contributed by AV, 13-Nov-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝑀, 𝑁〉):(0..^(𝑁 − 𝑀))⟶𝑉) |
| |
| Theorem | swrdvalfn 11196 |
Value of the subword extractor as function with domain. (Contributed by
Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by AV,
2-May-2020.)
|
| ⊢ ((𝑆 ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr 〈𝐹, 𝐿〉) Fn (0..^(𝐿 − 𝐹))) |
| |
| Theorem | swrdrn 11197 |
The range of a subword of a word is a subset of the set of symbols for the
word. (Contributed by AV, 13-Nov-2018.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ 𝑉) |
| |
| Theorem | swrdlend 11198 |
The value of the subword extractor is the empty set (undefined) if the
range is not valid. (Contributed by Alexander van der Vekens,
16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| |
| Theorem | swrdnd 11199 |
The value of the subword extractor is the empty set (undefined) if the
range is not valid. (Contributed by Alexander van der Vekens,
16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
|
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
| |
| Theorem | swrd0g 11200 |
A subword of an empty set is always the empty set. (Contributed by AV,
31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV,
2-May-2020.)
|
| ⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr
〈𝐹, 𝐿〉) = ∅) |