![]() |
Intuitionistic Logic Explorer Theorem List (p. 112 of 156) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | addcjd 11101 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
Theorem | cjexpd 11102 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
Theorem | readdd 11103 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
Theorem | imaddd 11104 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
Theorem | resubd 11105 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
Theorem | imsubd 11106 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
Theorem | remuld 11107 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | immuld 11108 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
Theorem | cjaddd 11109 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
Theorem | cjmuld 11110 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
Theorem | ipcnd 11111 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | cjdivapd 11112 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
Theorem | rered 11113 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
Theorem | reim0d 11114 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
Theorem | cjred 11115 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
Theorem | remul2d 11116 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
Theorem | immul2d 11117 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
Theorem | redivapd 11118 | Real part of a division. Related to remul2 11017. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
Theorem | imdivapd 11119 | Imaginary part of a division. Related to remul2 11017. (Contributed by Jim Kingdon, 15-Jun-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
Theorem | crred 11120 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
Theorem | crimd 11121 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
Theorem | cnreim 11122 | Complex apartness in terms of real and imaginary parts. See also apreim 8622 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)))) | ||
Theorem | caucvgrelemrec 11123* | Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (℩𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴)) | ||
Theorem | caucvgrelemcau 11124* | Lemma for caucvgre 11125. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | ||
Theorem | caucvgre 11125* |
Convergence of real sequences.
A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 19-Jul-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | cvg1nlemcxze 11126 | Lemma for cvg1n 11130. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.) |
⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸) ⇒ ⊢ (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)) | ||
Theorem | cvg1nlemf 11127* | Lemma for cvg1n 11130. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) | ||
Theorem | cvg1nlemcau 11128* | Lemma for cvg1n 11130. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) | ||
Theorem | cvg1nlemres 11129* | Lemma for cvg1n 11130. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | cvg1n 11130* |
Convergence of real sequences.
This is a version of caucvgre 11125 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | uzin2 11131 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) |
⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
Theorem | rexanuz 11132* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) |
⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | rexfiuz 11133* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) |
⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexuz3 11134* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
Theorem | rexanuz2 11135* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
Theorem | r19.29uz 11136* | A version of 19.29 1631 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
Theorem | r19.2uz 11137* | A version of r19.2m 3533 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) |
⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
Theorem | recvguniqlem 11138 | Lemma for recvguniq 11139. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) & ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) ⇒ ⊢ (𝜑 → ⊥) | ||
Theorem | recvguniq 11139* | Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹‘𝑘) + 𝑥))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹‘𝑘) + 𝑥))) ⇒ ⊢ (𝜑 → 𝐿 = 𝑀) | ||
Syntax | csqrt 11140 | Extend class notation to include square root of a complex number. |
class √ | ||
Syntax | cabs 11141 | Extend class notation to include a function for the absolute value (modulus) of a complex number. |
class abs | ||
Definition | df-rsqrt 11142* |
Define a function whose value is the square root of a nonnegative real
number.
Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root. (Contributed by Jim Kingdon, 23-Aug-2020.) |
⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | ||
Definition | df-abs 11143 | Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.) |
⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
Theorem | sqrtrval 11144* | Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) |
⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) | ||
Theorem | absval 11145 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
Theorem | rennim 11146 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
Theorem | sqrt0rlem 11147 | Lemma for sqrt0 11148. (Contributed by Jim Kingdon, 26-Aug-2020.) |
⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0) | ||
Theorem | sqrt0 11148 | Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ (√‘0) = 0 | ||
Theorem | resqrexlem1arp 11149 | Lemma for resqrex 11170. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10535 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) | ||
Theorem | resqrexlemp1rp 11150* | Lemma for resqrex 11170. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10535 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) | ||
Theorem | resqrexlemf 11151* | Lemma for resqrex 11170. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | ||
Theorem | resqrexlemf1 11152* | Lemma for resqrex 11170. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | ||
Theorem | resqrexlemfp1 11153* | Lemma for resqrex 11170. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) | ||
Theorem | resqrexlemover 11154* | Lemma for resqrex 11170. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) | ||
Theorem | resqrexlemdec 11155* | Lemma for resqrex 11170. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemdecn 11156* | Lemma for resqrex 11170. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemlo 11157* | Lemma for resqrex 11170. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹‘𝑁)) | ||
Theorem | resqrexlemcalc1 11158* | Lemma for resqrex 11170. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹‘𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹‘𝑁)↑2)))) | ||
Theorem | resqrexlemcalc2 11159* | Lemma for resqrex 11170. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹‘𝑁)↑2) − 𝐴) / 4)) | ||
Theorem | resqrexlemcalc3 11160* | Lemma for resqrex 11170. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
Theorem | resqrexlemnmsq 11161* | Lemma for resqrex 11170. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
Theorem | resqrexlemnm 11162* | Lemma for resqrex 11170. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝑁) − (𝐹‘𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1)))) | ||
Theorem | resqrexlemcvg 11163* | Lemma for resqrex 11170. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹‘𝑖) + 𝑥))) | ||
Theorem | resqrexlemgt0 11164* | Lemma for resqrex 11170. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → 0 ≤ 𝐿) | ||
Theorem | resqrexlemoverl 11165* | Lemma for resqrex 11170. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐿 ≤ (𝐹‘𝐾)) | ||
Theorem | resqrexlemglsq 11166* | Lemma for resqrex 11170. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺‘𝑘) + 𝑒))) | ||
Theorem | resqrexlemga 11167* | Lemma for resqrex 11170. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺‘𝑘) + 𝑒))) | ||
Theorem | resqrexlemsqa 11168* | Lemma for resqrex 11170. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → (𝐿↑2) = 𝐴) | ||
Theorem | resqrexlemex 11169* | Lemma for resqrex 11170. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) |
⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | resqrex 11170* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
Theorem | rsqrmo 11171* | Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
Theorem | rersqreu 11172* | Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
Theorem | resqrtcl 11173 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
Theorem | rersqrtthlem 11174 | Lemma for resqrtth 11175. (Contributed by Jim Kingdon, 10-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴))) | ||
Theorem | resqrtth 11175 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
Theorem | remsqsqrt 11176 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
Theorem | sqrtge0 11177 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | ||
Theorem | sqrtgt0 11178 | The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | ||
Theorem | sqrtmul 11179 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
Theorem | sqrtle 11180 | Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) | ||
Theorem | sqrtlt 11181 | Square root is strictly monotonic. Closed form of sqrtlti 11281. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) | ||
Theorem | sqrt11ap 11182 | Analogue to sqrt11 11183 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) # (√‘𝐵) ↔ 𝐴 # 𝐵)) | ||
Theorem | sqrt11 11183 | The square root function is one-to-one. Also see sqrt11ap 11182 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = (√‘𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | sqrt00 11184 | A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) = 0 ↔ 𝐴 = 0)) | ||
Theorem | rpsqrtcl 11185 | The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.) |
⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ+) | ||
Theorem | sqrtdiv 11186 | Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ+) → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) | ||
Theorem | sqrtsq2 11187 | Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) | ||
Theorem | sqrtsq 11188 | Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴↑2)) = 𝐴) | ||
Theorem | sqrtmsq 11189 | Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘(𝐴 · 𝐴)) = 𝐴) | ||
Theorem | sqrt1 11190 | The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.) |
⊢ (√‘1) = 1 | ||
Theorem | sqrt4 11191 | The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.) |
⊢ (√‘4) = 2 | ||
Theorem | sqrt9 11192 | The square root of 9 is 3. (Contributed by NM, 11-May-2004.) |
⊢ (√‘9) = 3 | ||
Theorem | sqrt2gt1lt2 11193 | The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.) |
⊢ (1 < (√‘2) ∧ (√‘2) < 2) | ||
Theorem | absneg 11194 | Absolute value of negative. (Contributed by NM, 27-Feb-2005.) |
⊢ (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴)) | ||
Theorem | abscl 11195 | Real closure of absolute value. (Contributed by NM, 3-Oct-1999.) |
⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | ||
Theorem | abscj 11196 | The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (abs‘(∗‘𝐴)) = (abs‘𝐴)) | ||
Theorem | absvalsq 11197 | Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.) |
⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) | ||
Theorem | absvalsq2 11198 | Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.) |
⊢ (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | sqabsadd 11199 | Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) | ||
Theorem | sqabssub 11200 | Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 · (ℜ‘(𝐴 · (∗‘𝐵)))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |