Theorem List for Intuitionistic Logic Explorer - 11101-11200 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | abssubi 11101 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴)) |
|
Theorem | absmuli 11102 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
NM, 1-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)) |
|
Theorem | sqabsaddi 11103 |
Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason]
p. 133. (Contributed by NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 + 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) + (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | sqabssubi 11104 |
Square of absolute value of difference. (Contributed by Steve
Rodriguez, 20-Jan-2007.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((abs‘(𝐴 − 𝐵))↑2) = ((((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) − (2 ·
(ℜ‘(𝐴 ·
(∗‘𝐵))))) |
|
Theorem | absdivapzi 11105 |
Absolute value distributes over division. (Contributed by Jim Kingdon,
13-Aug-2021.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐵 # 0 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrii 11106 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. This is Metamath 100
proof #91. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)) |
|
Theorem | abs3difi 11107 |
Absolute value of differences around common element. (Contributed by
NM, 2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
|
Theorem | abs3lemi 11108 |
Lemma involving absolute value of differences. (Contributed by NM,
2-Oct-1999.)
|
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℝ ⇒ ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | rpsqrtcld 11109 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈
ℝ+) |
|
Theorem | sqrtgt0d 11110 |
The square root of a positive real is positive. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈
ℝ+) ⇒ ⊢ (𝜑 → 0 < (√‘𝐴)) |
|
Theorem | absnidd 11111 |
A negative number is the negative of its own absolute value.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) = -𝐴) |
|
Theorem | leabsd 11112 |
A real number is less than or equal to its absolute value. (Contributed
by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → 𝐴 ≤ (abs‘𝐴)) |
|
Theorem | absred 11113 |
Absolute value of a real number. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2))) |
|
Theorem | resqrtcld 11114 |
The square root of a nonnegative real is a real. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘𝐴) ∈ ℝ) |
|
Theorem | sqrtmsqd 11115 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴) |
|
Theorem | sqrtsqd 11116 |
Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
|
Theorem | sqrtge0d 11117 |
The square root of a nonnegative real is nonnegative. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 0 ≤ (√‘𝐴)) |
|
Theorem | absidd 11118 |
A nonnegative number is its own absolute value. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (abs‘𝐴) = 𝐴) |
|
Theorem | sqrtdivd 11119 |
Square root distributes over division. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈
ℝ+) ⇒ ⊢ (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵))) |
|
Theorem | sqrtmuld 11120 |
Square root distributes over multiplication. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) |
|
Theorem | sqrtsq2d 11121 |
Relationship between square root and squares. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → ((√‘𝐴) = 𝐵 ↔ 𝐴 = (𝐵↑2))) |
|
Theorem | sqrtled 11122 |
Square root is monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵))) |
|
Theorem | sqrtltd 11123 |
Square root is strictly monotonic. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵))) |
|
Theorem | sqr11d 11124 |
The square root function is one-to-one. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐵)
& ⊢ (𝜑 → (√‘𝐴) = (√‘𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
|
Theorem | absltd 11125 |
Absolute value and 'less than' relation. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴 ∧ 𝐴 < 𝐵))) |
|
Theorem | absled 11126 |
Absolute value and 'less than or equal to' relation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
|
Theorem | abssubge0d 11127 |
Absolute value of a nonnegative difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
|
Theorem | abssuble0d 11128 |
Absolute value of a nonpositive difference. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (𝐵 − 𝐴)) |
|
Theorem | absdifltd 11129 |
The absolute value of a difference and 'less than' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) < 𝐶 ↔ ((𝐵 − 𝐶) < 𝐴 ∧ 𝐴 < (𝐵 + 𝐶)))) |
|
Theorem | absdifled 11130 |
The absolute value of a difference and 'less than or equal to' relation.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ)
⇒ ⊢ (𝜑 → ((abs‘(𝐴 − 𝐵)) ≤ 𝐶 ↔ ((𝐵 − 𝐶) ≤ 𝐴 ∧ 𝐴 ≤ (𝐵 + 𝐶)))) |
|
Theorem | icodiamlt 11131 |
Two elements in a half-open interval have separation strictly less than
the difference between the endpoints. (Contributed by Stefan O'Rear,
12-Sep-2014.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶 − 𝐷)) < (𝐵 − 𝐴)) |
|
Theorem | abscld 11132 |
Real closure of absolute value. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
|
Theorem | absvalsqd 11133 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴))) |
|
Theorem | absvalsq2d 11134 |
Square of value of absolute value function. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2))) |
|
Theorem | absge0d 11135 |
Absolute value is nonnegative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
|
Theorem | absval2d 11136 |
Value of absolute value function. Definition 10.36 of [Gleason] p. 133.
(Contributed by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) +
((ℑ‘𝐴)↑2)))) |
|
Theorem | abs00d 11137 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) = 0)
⇒ ⊢ (𝜑 → 𝐴 = 0) |
|
Theorem | absne0d 11138 |
The absolute value of a number is zero iff the number is zero.
Proposition 10-3.7(c) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ≠ 0) |
|
Theorem | absrpclapd 11139 |
The absolute value of a complex number apart from zero is a positive
real. (Contributed by Jim Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
|
Theorem | absnegd 11140 |
Absolute value of negative. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘-𝐴) = (abs‘𝐴)) |
|
Theorem | abscjd 11141 |
The absolute value of a number and its conjugate are the same.
Proposition 10-3.7(b) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴)) |
|
Theorem | releabsd 11142 |
The real part of a number is less than or equal to its absolute value.
Proposition 10-3.7(d) of [Gleason] p.
133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
|
Theorem | absexpd 11143 |
Absolute value of positive integer exponentiation. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (abs‘(𝐴↑𝑁)) = ((abs‘𝐴)↑𝑁)) |
|
Theorem | abssubd 11144 |
Swapping order of subtraction doesn't change the absolute value.
Example of [Apostol] p. 363.
(Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐵 − 𝐴))) |
|
Theorem | absmuld 11145 |
Absolute value distributes over multiplication. Proposition 10-3.7(f)
of [Gleason] p. 133. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵))) |
|
Theorem | absdivapd 11146 |
Absolute value distributes over division. (Contributed by Jim
Kingdon, 13-Aug-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵))) |
|
Theorem | abstrid 11147 |
Triangle inequality for absolute value. Proposition 10-3.7(h) of
[Gleason] p. 133. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difd 11148 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs2dif2d 11149 |
Difference of absolute values. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵))) |
|
Theorem | abs2difabsd 11150 |
Absolute value of difference of absolute values. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
|
Theorem | abs3difd 11151 |
Absolute value of differences around common element. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵)))) |
|
Theorem | abs3lemd 11152 |
Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐶)) < (𝐷 / 2)) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) ⇒ ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) < 𝐷) |
|
Theorem | qdenre 11153* |
The rational numbers are dense in ℝ: any real
number can be
approximated with arbitrary precision by a rational number. For order
theoretic density, see qbtwnre 10200. (Contributed by BJ, 15-Oct-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) →
∃𝑥 ∈ ℚ
(abs‘(𝑥 −
𝐴)) < 𝐵) |
|
4.7.5 The maximum of two real
numbers
|
|
Theorem | maxcom 11154 |
The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < ) |
|
Theorem | maxabsle 11155 |
An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon,
20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxleim 11156 |
Value of maximum when we know which number is larger. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
|
Theorem | maxabslemab 11157 |
Lemma for maxabs 11160. A variation of maxleim 11156- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 21-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) = 𝐵) |
|
Theorem | maxabslemlub 11158 |
Lemma for maxabs 11160. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 20-Dec-2021.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | maxabslemval 11159* |
Lemma for maxabs 11160. Value of the supremum. (Contributed by
Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |
|
Theorem | maxabs 11160 |
Maximum of two real numbers in terms of absolute value. (Contributed by
Jim Kingdon, 20-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | maxcl 11161 |
The maximum of two real numbers is a real number. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
|
Theorem | maxle1 11162 |
The maximum of two reals is no smaller than the first real. Lemma 3.10 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxle2 11163 |
The maximum of two reals is no smaller than the second real. Lemma 3.10
of [Geuvers], p. 10. (Contributed by Jim
Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < )) |
|
Theorem | maxleast 11164 |
The maximum of two reals is a least upper bound. Lemma 3.11 of
[Geuvers], p. 10. (Contributed by Jim
Kingdon, 22-Dec-2021.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶) |
|
Theorem | maxleastb 11165 |
Two ways of saying the maximum of two numbers is less than or equal to a
third. (Contributed by Jim Kingdon, 31-Jan-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐶))) |
|
Theorem | maxleastlt 11166 |
The maximum as a least upper bound, in terms of less than. (Contributed
by Jim Kingdon, 9-Feb-2022.)
|
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | maxleb 11167 |
Equivalence of ≤ and being equal to the maximum of
two reals. Lemma
3.12 of [Geuvers], p. 10. (Contributed by
Jim Kingdon, 21-Dec-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵)) |
|
Theorem | dfabsmax 11168 |
Absolute value of a real number in terms of maximum. Definition 3.13 of
[Geuvers], p. 11. (Contributed by BJ and
Jim Kingdon, 21-Dec-2021.)
|
⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < )) |
|
Theorem | maxltsup 11169 |
Two ways of saying the maximum of two numbers is less than a third.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶 ∧ 𝐵 < 𝐶))) |
|
Theorem | max0addsup 11170 |
The sum of the positive and negative part functions is the absolute value
function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
|
⊢ (𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) +
sup({-𝐴, 0}, ℝ, <
)) = (abs‘𝐴)) |
|
Theorem | rexanre 11171* |
Combine two different upper real properties into one. (Contributed by
Mario Carneiro, 8-May-2016.)
|
⊢ (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (𝜑 ∧ 𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜓)))) |
|
Theorem | rexico 11172* |
Restrict the base of an upper real quantifier to an upper real set.
(Contributed by Mario Carneiro, 12-May-2016.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → 𝜑))) |
|
Theorem | maxclpr 11173 |
The maximum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 9243 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 1-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
|
Theorem | rpmaxcl 11174 |
The maximum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 10-Nov-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ sup({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
|
Theorem | zmaxcl 11175 |
The maximum of two integers is an integer. (Contributed by Jim Kingdon,
27-Sep-2022.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈
ℤ) |
|
Theorem | 2zsupmax 11176 |
Two ways to express the maximum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 22-Jan-2023.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
|
Theorem | fimaxre2 11177* |
A nonempty finite set of real numbers has an upper bound. (Contributed
by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro,
13-Feb-2014.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
|
Theorem | negfi 11178* |
The negation of a finite set of real numbers is finite. (Contributed by
AV, 9-Aug-2020.)
|
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ∈ Fin) |
|
4.7.6 The minimum of two real
numbers
|
|
Theorem | mincom 11179 |
The minimum of two reals is commutative. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
⊢ inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < ) |
|
Theorem | minmax 11180 |
Minimum expressed in terms of maximum. (Contributed by Jim Kingdon,
8-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < )) |
|
Theorem | mincl 11181 |
The minumum of two real numbers is a real number. (Contributed by Jim
Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ) |
|
Theorem | min1inf 11182 |
The minimum of two numbers is less than or equal to the first.
(Contributed by Jim Kingdon, 8-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴) |
|
Theorem | min2inf 11183 |
The minimum of two numbers is less than or equal to the second.
(Contributed by Jim Kingdon, 9-Feb-2021.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵) |
|
Theorem | lemininf 11184 |
Two ways of saying a number is less than or equal to the minimum of two
others. (Contributed by NM, 3-Aug-2007.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 ≤ 𝐶))) |
|
Theorem | ltmininf 11185 |
Two ways of saying a number is less than the minimum of two others.
(Contributed by Jim Kingdon, 10-Feb-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵 ∧ 𝐴 < 𝐶))) |
|
Theorem | minabs 11186 |
The minimum of two real numbers in terms of absolute value. (Contributed
by Jim Kingdon, 15-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴 − 𝐵))) / 2)) |
|
Theorem | minclpr 11187 |
The minimum of two real numbers is one of those numbers if and only if
dichotomy (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) holds. For example, this can be
combined with zletric 9243 if one is dealing with integers, but real
number
dichotomy in general does not follow from our axioms. (Contributed by Jim
Kingdon, 23-May-2023.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴))) |
|
Theorem | rpmincl 11188 |
The minumum of two positive real numbers is a positive real number.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+)
→ inf({𝐴, 𝐵}, ℝ, < ) ∈
ℝ+) |
|
Theorem | bdtrilem 11189 |
Lemma for bdtri 11190. (Contributed by Steven Nguyen and Jim
Kingdon,
17-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |
|
Theorem | bdtri 11190 |
Triangle inequality for bounded values. (Contributed by Jim Kingdon,
15-May-2023.)
|
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < ))) |
|
Theorem | mul0inf 11191 |
Equality of a product with zero. A bit of a curiosity, in the sense that
theorems like abs00ap 11013 and mulap0bd 8562 may better express the ideas behind
it. (Contributed by Jim Kingdon, 31-Jul-2023.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0)) |
|
Theorem | mingeb 11192 |
Equivalence of ≤ and being equal to the minimum of
two reals.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴)) |
|
Theorem | 2zinfmin 11193 |
Two ways to express the minimum of two integers. Because order of
integers is decidable, we have more flexibility than for real numbers.
(Contributed by Jim Kingdon, 14-Oct-2024.)
|
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
|
4.7.7 The maximum of two extended
reals
|
|
Theorem | xrmaxleim 11194 |
Value of maximum when we know which extended real is larger.
(Contributed by Jim Kingdon, 25-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴 ≤ 𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵)) |
|
Theorem | xrmaxiflemcl 11195 |
Lemma for xrmaxif 11201. Closure. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈
ℝ*) |
|
Theorem | xrmaxifle 11196 |
An upper bound for {𝐴, 𝐵} in the extended reals.
(Contributed by
Jim Kingdon, 26-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))) |
|
Theorem | xrmaxiflemab 11197 |
Lemma for xrmaxif 11201. A variation of xrmaxleim 11194- that is, if we know
which of two real numbers is larger, we know the maximum of the two.
(Contributed by Jim Kingdon, 26-Apr-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵) |
|
Theorem | xrmaxiflemlub 11198 |
Lemma for xrmaxif 11201. A least upper bound for {𝐴, 𝐵}.
(Contributed by Jim Kingdon, 28-Apr-2023.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
)))))) ⇒ ⊢ (𝜑 → (𝐶 < 𝐴 ∨ 𝐶 < 𝐵)) |
|
Theorem | xrmaxiflemcom 11199 |
Lemma for xrmaxif 11201. Commutativity of an expression which we
will
later show to be the supremum. (Contributed by Jim Kingdon,
29-Apr-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ if(𝐵 = +∞,
+∞, if(𝐵 = -∞,
𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < )))))) |
|
Theorem | xrmaxiflemval 11200* |
Lemma for xrmaxif 11201. Value of the supremum. (Contributed by
Jim
Kingdon, 29-Apr-2023.)
|
⊢ 𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, <
))))) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝑀 ∈
ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧))) |