HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqrtgt0d 11101 The square root of a positive real is positive. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ+)       (𝜑 → 0 < (√‘𝐴))
 
Theoremabsnidd 11102 A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 ≤ 0)       (𝜑 → (abs‘𝐴) = -𝐴)
 
Theoremleabsd 11103 A real number is less than or equal to its absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑𝐴 ≤ (abs‘𝐴))
 
Theoremabsred 11104 Absolute value of a real number. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → (abs‘𝐴) = (√‘(𝐴↑2)))
 
Theoremresqrtcld 11105 The square root of a nonnegative real is a real. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘𝐴) ∈ ℝ)
 
Theoremsqrtmsqd 11106 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴 · 𝐴)) = 𝐴)
 
Theoremsqrtsqd 11107 Square root of square. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (√‘(𝐴↑2)) = 𝐴)
 
Theoremsqrtge0d 11108 The square root of a nonnegative real is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → 0 ≤ (√‘𝐴))
 
Theoremabsidd 11109 A nonnegative number is its own absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)       (𝜑 → (abs‘𝐴) = 𝐴)
 
Theoremsqrtdivd 11110 Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → (√‘(𝐴 / 𝐵)) = ((√‘𝐴) / (√‘𝐵)))
 
Theoremsqrtmuld 11111 Square root distributes over multiplication. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵)))
 
Theoremsqrtsq2d 11112 Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → ((√‘𝐴) = 𝐵𝐴 = (𝐵↑2)))
 
Theoremsqrtled 11113 Square root is monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴𝐵 ↔ (√‘𝐴) ≤ (√‘𝐵)))
 
Theoremsqrtltd 11114 Square root is strictly monotonic. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)       (𝜑 → (𝐴 < 𝐵 ↔ (√‘𝐴) < (√‘𝐵)))
 
Theoremsqr11d 11115 The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐴)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → 0 ≤ 𝐵)    &   (𝜑 → (√‘𝐴) = (√‘𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremabsltd 11116 Absolute value and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) < 𝐵 ↔ (-𝐵 < 𝐴𝐴 < 𝐵)))
 
Theoremabsled 11117 Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
 
Theoremabssubge0d 11118 Absolute value of a nonnegative difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐵𝐴)) = (𝐵𝐴))
 
Theoremabssuble0d 11119 Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴𝐵)       (𝜑 → (abs‘(𝐴𝐵)) = (𝐵𝐴))
 
Theoremabsdifltd 11120 The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) < 𝐶 ↔ ((𝐵𝐶) < 𝐴𝐴 < (𝐵 + 𝐶))))
 
Theoremabsdifled 11121 The absolute value of a difference and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)       (𝜑 → ((abs‘(𝐴𝐵)) ≤ 𝐶 ↔ ((𝐵𝐶) ≤ 𝐴𝐴 ≤ (𝐵 + 𝐶))))
 
Theoremicodiamlt 11122 Two elements in a half-open interval have separation strictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ 𝐷 ∈ (𝐴[,)𝐵))) → (abs‘(𝐶𝐷)) < (𝐵𝐴))
 
Theoremabscld 11123 Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) ∈ ℝ)
 
Theoremabsvalsqd 11124 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
 
Theoremabsvalsq2d 11125 Square of value of absolute value function. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
 
Theoremabsge0d 11126 Absolute value is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → 0 ≤ (abs‘𝐴))
 
Theoremabsval2d 11127 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘𝐴) = (√‘(((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
 
Theoremabs00d 11128 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑 → (abs‘𝐴) = 0)       (𝜑𝐴 = 0)
 
Theoremabsne0d 11129 The absolute value of a number is zero iff the number is zero. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)       (𝜑 → (abs‘𝐴) ≠ 0)
 
Theoremabsrpclapd 11130 The absolute value of a complex number apart from zero is a positive real. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 # 0)       (𝜑 → (abs‘𝐴) ∈ ℝ+)
 
Theoremabsnegd 11131 Absolute value of negative. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘-𝐴) = (abs‘𝐴))
 
Theoremabscjd 11132 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (abs‘(∗‘𝐴)) = (abs‘𝐴))
 
Theoremreleabsd 11133 The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)       (𝜑 → (ℜ‘𝐴) ≤ (abs‘𝐴))
 
Theoremabsexpd 11134 Absolute value of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 
Theoremabssubd 11135 Swapping order of subtraction doesn't change the absolute value. Example of [Apostol] p. 363. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) = (abs‘(𝐵𝐴)))
 
Theoremabsmuld 11136 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (abs‘𝐵)))
 
Theoremabsdivapd 11137 Absolute value distributes over division. (Contributed by Jim Kingdon, 13-Aug-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (abs‘(𝐴 / 𝐵)) = ((abs‘𝐴) / (abs‘𝐵)))
 
Theoremabstrid 11138 Triangle inequality for absolute value. Proposition 10-3.7(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴 + 𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difd 11139 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs2dif2d 11140 Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘𝐴) + (abs‘𝐵)))
 
Theoremabs2difabsd 11141 Absolute value of difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴𝐵)))
 
Theoremabs3difd 11142 Absolute value of differences around common element. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)       (𝜑 → (abs‘(𝐴𝐵)) ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐶𝐵))))
 
Theoremabs3lemd 11143 Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑 → (abs‘(𝐴𝐶)) < (𝐷 / 2))    &   (𝜑 → (abs‘(𝐶𝐵)) < (𝐷 / 2))       (𝜑 → (abs‘(𝐴𝐵)) < 𝐷)
 
Theoremqdenre 11144* The rational numbers are dense in : any real number can be approximated with arbitrary precision by a rational number. For order theoretic density, see qbtwnre 10192. (Contributed by BJ, 15-Oct-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℚ (abs‘(𝑥𝐴)) < 𝐵)
 
4.7.5  The maximum of two real numbers
 
Theoremmaxcom 11145 The maximum of two reals is commutative. Lemma 3.9 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
sup({𝐴, 𝐵}, ℝ, < ) = sup({𝐵, 𝐴}, ℝ, < )
 
Theoremmaxabsle 11146 An upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
Theoremmaxleim 11147 Value of maximum when we know which number is larger. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
Theoremmaxabslemab 11148 Lemma for maxabs 11151. A variation of maxleim 11147- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 < 𝐵)       (𝜑 → (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) = 𝐵)
 
Theoremmaxabslemlub 11149 Lemma for maxabs 11151. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 20-Dec-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐶 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremmaxabslemval 11150* Lemma for maxabs 11151. Value of the supremum. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) ∈ ℝ ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2) → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
Theoremmaxabs 11151 Maximum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 20-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) + (abs‘(𝐴𝐵))) / 2))
 
Theoremmaxcl 11152 The maximum of two real numbers is a real number. (Contributed by Jim Kingdon, 22-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
Theoremmaxle1 11153 The maximum of two reals is no smaller than the first real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremmaxle2 11154 The maximum of two reals is no smaller than the second real. Lemma 3.10 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremmaxleast 11155 The maximum of two reals is a least upper bound. Lemma 3.11 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 22-Dec-2021.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴𝐶𝐵𝐶)) → sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶)
 
Theoremmaxleastb 11156 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Jim Kingdon, 31-Jan-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
 
Theoremmaxleastlt 11157 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐶 < sup({𝐴, 𝐵}, ℝ, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremmaxleb 11158 Equivalence of and being equal to the maximum of two reals. Lemma 3.12 of [Geuvers], p. 10. (Contributed by Jim Kingdon, 21-Dec-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ sup({𝐴, 𝐵}, ℝ, < ) = 𝐵))
 
Theoremdfabsmax 11159 Absolute value of a real number in terms of maximum. Definition 3.13 of [Geuvers], p. 11. (Contributed by BJ and Jim Kingdon, 21-Dec-2021.)
(𝐴 ∈ ℝ → (abs‘𝐴) = sup({𝐴, -𝐴}, ℝ, < ))
 
Theoremmaxltsup 11160 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
Theoremmax0addsup 11161 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
(𝐴 ∈ ℝ → (sup({𝐴, 0}, ℝ, < ) + sup({-𝐴, 0}, ℝ, < )) = (abs‘𝐴))
 
Theoremrexanre 11162* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
(𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (𝜑𝜓)) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜓))))
 
Theoremrexico 11163* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑗 ∈ (𝐵[,)+∞)∀𝑘𝐴 (𝑗𝑘𝜑) ↔ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘𝜑)))
 
Theoremmaxclpr 11164 The maximum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9235 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sup({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremrpmaxcl 11165 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
Theoremzmaxcl 11166 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) ∈ ℤ)
 
Theorem2zsupmax 11167 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → sup({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐵, 𝐴))
 
Theoremfimaxre2 11168* A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
 
Theoremnegfi 11169* The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin) → {𝑛 ∈ ℝ ∣ -𝑛𝐴} ∈ Fin)
 
4.7.6  The minimum of two real numbers
 
Theoremmincom 11170 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
inf({𝐴, 𝐵}, ℝ, < ) = inf({𝐵, 𝐴}, ℝ, < )
 
Theoremminmax 11171 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = -sup({-𝐴, -𝐵}, ℝ, < ))
 
Theoremmincl 11172 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ)
 
Theoremmin1inf 11173 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐴)
 
Theoremmin2inf 11174 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) ≤ 𝐵)
 
Theoremlemininf 11175 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴𝐵𝐴𝐶)))
 
Theoremltmininf 11176 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < inf({𝐵, 𝐶}, ℝ, < ) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 
Theoremminabs 11177 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → inf({𝐴, 𝐵}, ℝ, < ) = (((𝐴 + 𝐵) − (abs‘(𝐴𝐵))) / 2))
 
Theoremminclpr 11178 The minimum of two real numbers is one of those numbers if and only if dichotomy (𝐴𝐵𝐵𝐴) holds. For example, this can be combined with zletric 9235 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (inf({𝐴, 𝐵}, ℝ, < ) ∈ {𝐴, 𝐵} ↔ (𝐴𝐵𝐵𝐴)))
 
Theoremrpmincl 11179 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → inf({𝐴, 𝐵}, ℝ, < ) ∈ ℝ+)
 
Theorembdtrilem 11180 Lemma for bdtri 11181. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
 
Theorembdtri 11181 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
 
Theoremmul0inf 11182 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11004 and mulap0bd 8554 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) = 0 ↔ inf({(abs‘𝐴), (abs‘𝐵)}, ℝ, < ) = 0))
 
Theoremmingeb 11183 Equivalence of and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ inf({𝐴, 𝐵}, ℝ, < ) = 𝐴))
 
Theorem2zinfmin 11184 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → inf({𝐴, 𝐵}, ℝ, < ) = if(𝐴𝐵, 𝐴, 𝐵))
 
4.7.7  The maximum of two extended reals
 
Theoremxrmaxleim 11185 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → sup({𝐴, 𝐵}, ℝ*, < ) = 𝐵))
 
Theoremxrmaxiflemcl 11186 Lemma for xrmaxif 11192. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) ∈ ℝ*)
 
Theoremxrmaxifle 11187 An upper bound for {𝐴, 𝐵} in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxiflemab 11188 Lemma for xrmaxif 11192. A variation of xrmaxleim 11185- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑 → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = 𝐵)
 
Theoremxrmaxiflemlub 11189 Lemma for xrmaxif 11192. A least upper bound for {𝐴, 𝐵}. (Contributed by Jim Kingdon, 28-Apr-2023.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐶 < if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))       (𝜑 → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrmaxiflemcom 11190 Lemma for xrmaxif 11192. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))) = if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, sup({𝐵, 𝐴}, ℝ, < ))))))
 
Theoremxrmaxiflemval 11191* Lemma for xrmaxif 11192. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
𝑀 = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < )))))       ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑀 ∈ ℝ* ∧ ∀𝑥 ∈ {𝐴, 𝐵} ¬ 𝑀 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝑀 → ∃𝑧 ∈ {𝐴, 𝐵}𝑥 < 𝑧)))
 
Theoremxrmaxif 11192 Maximum of two extended reals in terms of if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, 𝐴, if(𝐴 = +∞, +∞, if(𝐴 = -∞, 𝐵, sup({𝐴, 𝐵}, ℝ, < ))))))
 
Theoremxrmaxcl 11193 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → sup({𝐴, 𝐵}, ℝ*, < ) ∈ ℝ*)
 
Theoremxrmax1sup 11194 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmax2sup 11195 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ sup({𝐴, 𝐵}, ℝ*, < ))
 
Theoremxrmaxrecl 11196 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → sup({𝐴, 𝐵}, ℝ*, < ) = sup({𝐴, 𝐵}, ℝ, < ))
 
Theoremxrmaxleastlt 11197 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐶 < sup({𝐴, 𝐵}, ℝ*, < ))) → (𝐶 < 𝐴𝐶 < 𝐵))
 
Theoremxrltmaxsup 11198 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 < sup({𝐴, 𝐵}, ℝ*, < ) ↔ (𝐶 < 𝐴𝐶 < 𝐵)))
 
Theoremxrmaxltsup 11199 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 
Theoremxrmaxlesup 11200 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (sup({𝐴, 𝐵}, ℝ*, < ) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >