| Intuitionistic Logic Explorer Theorem List (p. 112 of 158)  | < Previous Next > | |
| Bad symbols? Try the
 GIF version.  | 
||
| 
 Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List  | 
||
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | crrei 11101 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) | 
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴 | ||
| Theorem | crimi 11102 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) | 
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵 | ||
| Theorem | recld 11103 | The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) ∈ ℝ) | ||
| Theorem | imcld 11104 | The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) | ||
| Theorem | cjcld 11105 | Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) ∈ ℂ) | ||
| Theorem | replimd 11106 | Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
| Theorem | remimd 11107 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
| Theorem | cjcjd 11108 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(∗‘𝐴)) = 𝐴) | ||
| Theorem | reim0bd 11109 | A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℑ‘𝐴) = 0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | rerebd 11110 | A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjrebd 11111 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (∗‘𝐴) = 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | cjne0d 11112 | A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 11113 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) ≠ 0) | ||
| Theorem | cjap0d 11113 | A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (∗‘𝐴) # 0) | ||
| Theorem | recjd 11114 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
| Theorem | imcjd 11115 | Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
| Theorem | cjmulrcld 11116 | A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
| Theorem | cjmulvald 11117 | A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
| Theorem | cjmulge0d 11118 | A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
| Theorem | renegd 11119 | Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
| Theorem | imnegd 11120 | Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
| Theorem | cjnegd 11121 | Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘-𝐴) = -(∗‘𝐴)) | ||
| Theorem | addcjd 11122 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
| Theorem | cjexpd 11123 | Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
| Theorem | readdd 11124 | Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
| Theorem | imaddd 11125 | Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
| Theorem | resubd 11126 | Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
| Theorem | imsubd 11127 | Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
| Theorem | remuld 11128 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | immuld 11129 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
| Theorem | cjaddd 11130 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
| Theorem | cjmuld 11131 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
| Theorem | ipcnd 11132 | Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
| Theorem | cjdivapd 11133 | Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) | ||
| Theorem | rered 11134 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘𝐴) = 𝐴) | ||
| Theorem | reim0d 11135 | The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘𝐴) = 0) | ||
| Theorem | cjred 11136 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (∗‘𝐴) = 𝐴) | ||
| Theorem | remul2d 11137 | Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
| Theorem | immul2d 11138 | Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
| Theorem | redivapd 11139 | Real part of a division. Related to remul2 11038. (Contributed by Jim Kingdon, 15-Jun-2020.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℜ‘(𝐵 / 𝐴)) = ((ℜ‘𝐵) / 𝐴)) | ||
| Theorem | imdivapd 11140 | Imaginary part of a division. Related to remul2 11038. (Contributed by Jim Kingdon, 15-Jun-2020.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → (ℑ‘(𝐵 / 𝐴)) = ((ℑ‘𝐵) / 𝐴)) | ||
| Theorem | crred 11141 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
| Theorem | crimd 11142 | The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
| Theorem | cnreim 11143 | Complex apartness in terms of real and imaginary parts. See also apreim 8630 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.) | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ ((ℜ‘𝐴) # (ℜ‘𝐵) ∨ (ℑ‘𝐴) # (ℑ‘𝐵)))) | ||
| Theorem | caucvgrelemrec 11144* | Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (℩𝑟 ∈ ℝ (𝐴 · 𝑟) = 1) = (1 / 𝐴)) | ||
| Theorem | caucvgrelemcau 11145* | Lemma for caucvgre 11146. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | ||
| Theorem | caucvgre 11146* | 
Convergence of real sequences.
 A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 19-Jul-2021.)  | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (1 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (1 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
| Theorem | cvg1nlemcxze 11147 | Lemma for cvg1n 11151. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.) | 
| ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → ((((𝐶 · 2) / 𝑋) / 𝑍) + 𝐴) < 𝐸) ⇒ ⊢ (𝜑 → (𝐶 / (𝐸 · 𝑍)) < (𝑋 / 2)) | ||
| Theorem | cvg1nlemf 11148* | Lemma for cvg1n 11151. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → 𝐺:ℕ⟶ℝ) | ||
| Theorem | cvg1nlemcau 11149* | Lemma for cvg1n 11151. By selecting spaced out terms for the modified sequence 𝐺, the terms are within 1 / 𝑛 (without the constant 𝐶). (Contributed by Jim Kingdon, 1-Aug-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐺‘𝑛) < ((𝐺‘𝑘) + (1 / 𝑛)) ∧ (𝐺‘𝑘) < ((𝐺‘𝑛) + (1 / 𝑛)))) | ||
| Theorem | cvg1nlemres 11150* | Lemma for cvg1n 11151. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) & ⊢ 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍))) & ⊢ (𝜑 → 𝑍 ∈ ℕ) & ⊢ (𝜑 → 𝐶 < 𝑍) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
| Theorem | cvg1n 11151* | 
Convergence of real sequences.
 This is a version of caucvgre 11146 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.)  | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) | ||
| Theorem | uzin2 11152 | The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.) | 
| ⊢ ((𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥) → (𝐴 ∩ 𝐵) ∈ ran ℤ≥) | ||
| Theorem | rexanuz 11153* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.) | 
| ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | rexfiuz 11154* | Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.) | 
| ⊢ (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐴 𝜑 ↔ ∀𝑛 ∈ 𝐴 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexuz3 11155* | Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.) | 
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) | ||
| Theorem | rexanuz2 11156* | Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) | 
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | ||
| Theorem | r19.29uz 11157* | A version of 19.29 1634 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.) | 
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ ((∀𝑘 ∈ 𝑍 𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓)) | ||
| Theorem | r19.2uz 11158* | A version of r19.2m 3537 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.) | 
| ⊢ 𝑍 = (ℤ≥‘𝑀) ⇒ ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → ∃𝑘 ∈ 𝑍 𝜑) | ||
| Theorem | recvguniqlem 11159 | Lemma for recvguniq 11160. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝐴 < ((𝐹‘𝐾) + ((𝐴 − 𝐵) / 2))) & ⊢ (𝜑 → (𝐹‘𝐾) < (𝐵 + ((𝐴 − 𝐵) / 2))) ⇒ ⊢ (𝜑 → ⊥) | ||
| Theorem | recvguniq 11160* | Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.) | 
| ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹‘𝑘) + 𝑥))) & ⊢ (𝜑 → 𝑀 ∈ ℝ) & ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹‘𝑘) + 𝑥))) ⇒ ⊢ (𝜑 → 𝐿 = 𝑀) | ||
| Syntax | csqrt 11161 | Extend class notation to include square root of a complex number. | 
| class √ | ||
| Syntax | cabs 11162 | Extend class notation to include a function for the absolute value (modulus) of a complex number. | 
| class abs | ||
| Definition | df-rsqrt 11163* | 
Define a function whose value is the square root of a nonnegative real
       number.
 Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root. (Contributed by Jim Kingdon, 23-Aug-2020.)  | 
| ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | ||
| Definition | df-abs 11164 | Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.) | 
| ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | ||
| Theorem | sqrtrval 11165* | Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.) | 
| ⊢ (𝐴 ∈ ℝ → (√‘𝐴) = (℩𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥))) | ||
| Theorem | absval 11166 | The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) | 
| ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) | ||
| Theorem | rennim 11167 | A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) | 
| ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) | ||
| Theorem | sqrt0rlem 11168 | Lemma for sqrt0 11169. (Contributed by Jim Kingdon, 26-Aug-2020.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ ((𝐴↑2) = 0 ∧ 0 ≤ 𝐴)) ↔ 𝐴 = 0) | ||
| Theorem | sqrt0 11169 | Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.) | 
| ⊢ (√‘0) = 0 | ||
| Theorem | resqrexlem1arp 11170 | Lemma for resqrex 11191. 1 + 𝐴 is a positive real (expressed in a way that will help apply seqf 10556 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((ℕ × {(1 + 𝐴)})‘𝑁) ∈ ℝ+) | ||
| Theorem | resqrexlemp1rp 11171* | Lemma for resqrex 11191. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10556 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) | 
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵(𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2))𝐶) ∈ ℝ+) | ||
| Theorem | resqrexlemf 11172* | Lemma for resqrex 11191. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) | ||
| Theorem | resqrexlemf1 11173* | Lemma for resqrex 11191. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘1) = (1 + 𝐴)) | ||
| Theorem | resqrexlemfp1 11174* | Lemma for resqrex 11191. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹‘𝑁) + (𝐴 / (𝐹‘𝑁))) / 2)) | ||
| Theorem | resqrexlemover 11175* | Lemma for resqrex 11191. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐴 < ((𝐹‘𝑁)↑2)) | ||
| Theorem | resqrexlemdec 11176* | Lemma for resqrex 11191. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹‘𝑁)) | ||
| Theorem | resqrexlemdecn 11177* | Lemma for resqrex 11191. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) < (𝐹‘𝑁)) | ||
| Theorem | resqrexlemlo 11178* | Lemma for resqrex 11191. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (1 / (2↑𝑁)) < (𝐹‘𝑁)) | ||
| Theorem | resqrexlemcalc1 11179* | Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹‘𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹‘𝑁)↑2)))) | ||
| Theorem | resqrexlemcalc2 11180* | Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) ≤ ((((𝐹‘𝑁)↑2) − 𝐴) / 4)) | ||
| Theorem | resqrexlemcalc3 11181* | Lemma for resqrex 11191. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
| Theorem | resqrexlemnmsq 11182* | Lemma for resqrex 11191. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) | ||
| Theorem | resqrexlemnm 11183* | Lemma for resqrex 11191. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ≤ 𝑀) ⇒ ⊢ (𝜑 → ((𝐹‘𝑁) − (𝐹‘𝑀)) < ((((𝐹‘1)↑2) · 2) / (2↑(𝑁 − 1)))) | ||
| Theorem | resqrexlemcvg 11184* | Lemma for resqrex 11191. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑟 + 𝑥) ∧ 𝑟 < ((𝐹‘𝑖) + 𝑥))) | ||
| Theorem | resqrexlemgt0 11185* | Lemma for resqrex 11191. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → 0 ≤ 𝐿) | ||
| Theorem | resqrexlemoverl 11186* | Lemma for resqrex 11191. Every term in the sequence is an overestimate compared with the limit 𝐿. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐿 ≤ (𝐹‘𝐾)) | ||
| Theorem | resqrexlemglsq 11187* | Lemma for resqrex 11191. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺‘𝑘) + 𝑒))) | ||
| Theorem | resqrexlemga 11188* | Lemma for resqrex 11191. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) & ⊢ 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹‘𝑥)↑2)) ⇒ ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐺‘𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺‘𝑘) + 𝑒))) | ||
| Theorem | resqrexlemsqa 11189* | Lemma for resqrex 11191. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐿 ∈ ℝ) & ⊢ (𝜑 → ∀𝑒 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹‘𝑖) + 𝑒))) ⇒ ⊢ (𝜑 → (𝐿↑2) = 𝐴) | ||
| Theorem | resqrexlemex 11190* | Lemma for resqrex 11191. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) | 
| ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | resqrex 11191* | Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) | ||
| Theorem | rsqrmo 11192* | Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
| Theorem | rersqreu 11193* | Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℝ ((𝑥↑2) = 𝐴 ∧ 0 ≤ 𝑥)) | ||
| Theorem | resqrtcl 11194 | Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (√‘𝐴) ∈ ℝ) | ||
| Theorem | rersqrtthlem 11195 | Lemma for resqrtth 11196. (Contributed by Jim Kingdon, 10-Aug-2021.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (((√‘𝐴)↑2) = 𝐴 ∧ 0 ≤ (√‘𝐴))) | ||
| Theorem | resqrtth 11196 | Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | ||
| Theorem | remsqsqrt 11197 | Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴) · (√‘𝐴)) = 𝐴) | ||
| Theorem | sqrtge0 11198 | The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 0 ≤ (√‘𝐴)) | ||
| Theorem | sqrtgt0 11199 | The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.) | 
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (√‘𝐴)) | ||
| Theorem | sqrtmul 11200 | Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.) | 
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) = ((√‘𝐴) · (√‘𝐵))) | ||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |