HomeHome Intuitionistic Logic Explorer
Theorem List (p. 112 of 165)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11101-11200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremwrdeq 11101 Equality theorem for the set of words. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝑆 = 𝑇 → Word 𝑆 = Word 𝑇)
 
Theoremwrdeqi 11102 Equality theorem for the set of words, inference form. (Contributed by AV, 23-May-2021.)
𝑆 = 𝑇       Word 𝑆 = Word 𝑇
 
Theoremiswrddm0 11103 A function with empty domain is a word. (Contributed by AV, 13-Oct-2018.)
(𝑊:∅⟶𝑆𝑊 ∈ Word 𝑆)
 
Theoremwrd0 11104 The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
∅ ∈ Word 𝑆
 
Theorem0wrd0 11105 The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018.)
(𝑊 ∈ Word ∅ ↔ 𝑊 = ∅)
 
Theoremffz0iswrdnn0 11106 A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018.) (Proof shortened by AV, 13-Oct-2018.) (Proof shortened by JJ, 18-Nov-2022.)
((𝑊:(0...𝐿)⟶𝑆𝐿 ∈ ℕ0) → 𝑊 ∈ Word 𝑆)
 
Theoremwrdsymb 11107 A word is a word over the symbols it consists of. (Contributed by AV, 1-Dec-2022.)
(𝑆 ∈ Word 𝐴𝑆 ∈ Word (𝑆 “ (0..^(♯‘𝑆))))
 
Theoremnfwrd 11108 Hypothesis builder for Word 𝑆. (Contributed by Mario Carneiro, 26-Feb-2016.)
𝑥𝑆       𝑥Word 𝑆
 
Theoremcsbwrdg 11109* Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑆𝑉𝑆 / 𝑥Word 𝑥 = Word 𝑆)
 
Theoremwrdnval 11110* Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.)
((𝑉𝑋𝑁 ∈ ℕ0) → {𝑤 ∈ Word 𝑉 ∣ (♯‘𝑤) = 𝑁} = (𝑉𝑚 (0..^𝑁)))
 
Theoremwrdmap 11111 Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
((𝑉𝑋𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ↔ 𝑊 ∈ (𝑉𝑚 (0..^𝑁))))
 
Theoremwrdsymb0 11112 A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝑊) ≤ 𝐼) → (𝑊𝐼) = ∅))
 
Theoremwrdlenge1n0 11113 A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018.)
(𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ ↔ 1 ≤ (♯‘𝑊)))
 
Theoremlen0nnbi 11114 The length of a word is a positive integer iff the word is not empty. (Contributed by AV, 22-Mar-2022.)
(𝑊 ∈ Word 𝑆 → (𝑊 ≠ ∅ ↔ (♯‘𝑊) ∈ ℕ))
 
Theoremwrdlenge2n0 11115 A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑊)) → 𝑊 ≠ ∅)
 
Theoremwrdsymb1 11116 The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
((𝑊 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑊)) → (𝑊‘0) ∈ 𝑉)
 
Theoremwrdlen1 11117* A word of length 1 starts with a symbol. (Contributed by AV, 20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → ∃𝑣𝑉 (𝑊‘0) = 𝑣)
 
Theoremfstwrdne 11118 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
 
Theoremfstwrdne0 11119 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (𝑊‘0) ∈ 𝑉)
 
Theoremeqwrd 11120* Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) (Revised by JJ, 30-Dec-2023.)
((𝑈 ∈ Word 𝑆𝑊 ∈ Word 𝑇) → (𝑈 = 𝑊 ↔ ((♯‘𝑈) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑈))(𝑈𝑖) = (𝑊𝑖))))
 
Theoremelovmpowrd 11121* Implications for the value of an operation defined by the maps-to notation with a class abstraction of words as a result having an element. Note that 𝜑 may depend on 𝑧 as well as on 𝑣 and 𝑦. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝑂 = (𝑣 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∈ Word 𝑣𝜑})       (𝑍 ∈ (𝑉𝑂𝑌) → (𝑉 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ Word 𝑉))
 
Theoremwrdred1 11122 A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021.)
(𝐹 ∈ Word 𝑆 → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) ∈ Word 𝑆)
 
Theoremwrdred1hash 11123 The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))
 
4.7.2  Last symbol of a word
 
Syntaxclsw 11124 Extend class notation with the Last Symbol of a word.
class lastS
 
Definitiondf-lsw 11125 Extract the last symbol of a word. May be not meaningful for other sets which are not words. The name lastS (as abbreviation of "lastSymbol") is a compromise between usually used names for corresponding functions in computer programs (as last() or lastChar()), the terminology used for words in set.mm ("symbol" instead of "character") and brevity ("lastS" is shorter than "lastChar" and "lastSymbol"). Labels of theorems about last symbols of a word will contain the abbreviation "lsw" (Last Symbol of a Word). (Contributed by Alexander van der Vekens, 18-Mar-2018.)
lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
 
Theoremlswwrd 11126 Extract the last symbol of a word. (Contributed by Alexander van der Vekens, 18-Mar-2018.) (Revised by Jim Kingdon, 18-Dec-2025.)
(𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
 
Theoremlsw0 11127 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 0) → (lastS‘𝑊) = ∅)
 
Theoremlsw0g 11128 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 11-Nov-2018.)
(lastS‘∅) = ∅
 
Theoremlsw1 11129 The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0))
 
Theoremlswcl 11130 Closure of the last symbol: the last symbol of a nonempty word belongs to the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof shortened by AV, 29-Apr-2020.)
((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (lastS‘𝑊) ∈ 𝑉)
 
Theoremlswex 11131 Existence of the last symbol. The last symbol of a word is a set. See lsw0g 11128 or lswcl 11130 if you want more specific results for empty or nonempty words, respectively. (Contributed by Jim Kingdon, 27-Dec-2025.)
(𝑊 ∈ Word 𝑉 → (lastS‘𝑊) ∈ V)
 
Theoremlswlgt0cl 11132 The last symbol of a nonempty word is an element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof shortened by AV, 29-Apr-2020.)
((𝑁 ∈ ℕ ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁)) → (lastS‘𝑊) ∈ 𝑉)
 
4.7.3  Concatenations of words
 
Syntaxcconcat 11133 Syntax for the concatenation operator.
class ++
 
Definitiondf-concat 11134* Define the concatenation operator which combines two words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.)
++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
 
Theoremccatfvalfi 11135* Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆 ∈ Fin ∧ 𝑇 ∈ Fin) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
 
Theoremccatcl 11136 The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
 
Theoremccatclab 11137 The concatenation of words over two sets is a word over the union of those sets. (Contributed by Jim Kingdon, 19-Dec-2025.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word (𝐴𝐵))
 
Theoremccatlen 11138 The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by JJ, 1-Jan-2024.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
 
Theoremccat0 11139 The concatenation of two words is empty iff the two words are empty. (Contributed by AV, 4-Mar-2022.) (Revised by JJ, 18-Jan-2024.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) = ∅ ↔ (𝑆 = ∅ ∧ 𝑇 = ∅)))
 
Theoremccatval1 11140 Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Revised by JJ, 18-Jan-2024.)
((𝑆 ∈ Word 𝐴𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆𝐼))
 
Theoremccatval2 11141 Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ ((♯‘𝑆)..^((♯‘𝑆) + (♯‘𝑇)))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑇‘(𝐼 − (♯‘𝑆))))
 
Theoremccatval3 11142 Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝐼 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝐼 + (♯‘𝑆))) = (𝑇𝐼))
 
Theoremelfzelfzccat 11143 An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(♯‘𝐴)) → 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
 
Theoremccatvalfn 11144 The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) Fn (0..^((♯‘𝐴) + (♯‘𝐵))))
 
Theoremccatsymb 11145 The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
 
Theoremccatfv0 11146 The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
 
Theoremccatval1lsw 11147 The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐴 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘𝐴) − 1)) = (lastS‘𝐴))
 
Theoremccatval21sw 11148 The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘(♯‘𝐴)) = (𝐵‘0))
 
Theoremccatlid 11149 Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
(𝑆 ∈ Word 𝐵 → (∅ ++ 𝑆) = 𝑆)
 
Theoremccatrid 11150 Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
(𝑆 ∈ Word 𝐵 → (𝑆 ++ ∅) = 𝑆)
 
Theoremccatass 11151 Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑈 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ++ 𝑈) = (𝑆 ++ (𝑇 ++ 𝑈)))
 
Theoremccatrn 11152 The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ran (𝑆 ++ 𝑇) = (ran 𝑆 ∪ ran 𝑇))
 
Theoremccatidid 11153 Concatenation of the empty word by the empty word. (Contributed by AV, 26-Mar-2022.)
(∅ ++ ∅) = ∅
 
Theoremlswccatn0lsw 11154 The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
 
Theoremlswccat0lsw 11155 The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
(𝑊 ∈ Word 𝑉 → (lastS‘(𝑊 ++ ∅)) = (lastS‘𝑊))
 
4.7.4  Singleton words
 
Syntaxcs1 11156 Syntax for the singleton word constructor.
class ⟨“𝐴”⟩
 
Definitiondf-s1 11157 Define the canonical injection from symbols to words. Although not required, 𝐴 should usually be a set. Otherwise, the singleton word ⟨“𝐴”⟩ would be the singleton word consisting of the empty set, see s1prc 11164, and not, as maybe expected, the empty word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
 
Theorems1val 11158 Value of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝐴𝑉 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
 
Theorems1rn 11159 The range of a singleton word. (Contributed by Mario Carneiro, 18-Jul-2016.)
(𝐴𝑉 → ran ⟨“𝐴”⟩ = {𝐴})
 
Theorems1eq 11160 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝐴 = 𝐵 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
 
Theorems1eqd 11161 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → ⟨“𝐴”⟩ = ⟨“𝐵”⟩)
 
Theorems1cl 11162 A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
(𝐴𝐵 → ⟨“𝐴”⟩ ∈ Word 𝐵)
 
Theorems1cld 11163 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
(𝜑𝐴𝐵)       (𝜑 → ⟨“𝐴”⟩ ∈ Word 𝐵)
 
Theorems1prc 11164 Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)
 
Theorems1leng 11165 Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝐴𝑉 → (♯‘⟨“𝐴”⟩) = 1)
 
Theorems1dmg 11166 The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.)
(𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
 
Theorems1fv 11167 Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
(𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)
 
Theoremlsws1 11168 The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018.)
(𝐴𝑉 → (lastS‘⟨“𝐴”⟩) = 𝐴)
 
Theoremeqs1 11169 A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
((𝑊 ∈ Word 𝐴 ∧ (♯‘𝑊) = 1) → 𝑊 = ⟨“(𝑊‘0)”⟩)
 
Theoremwrdl1exs1 11170* A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.)
((𝑊 ∈ Word 𝑆 ∧ (♯‘𝑊) = 1) → ∃𝑠𝑆 𝑊 = ⟨“𝑠”⟩)
 
Theoremwrdl1s1 11171 A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
(𝑆𝑉 → (𝑊 = ⟨“𝑆”⟩ ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 1 ∧ (𝑊‘0) = 𝑆)))
 
Theorems111 11172 The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝑆𝐴𝑇𝐴) → (⟨“𝑆”⟩ = ⟨“𝑇”⟩ ↔ 𝑆 = 𝑇))
 
4.7.5  Concatenations with singleton words
 
Theoremccatws1cl 11173 The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉) → (𝑊 ++ ⟨“𝑋”⟩) ∈ Word 𝑉)
 
Theoremccat2s1cl 11174 The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑋𝑉𝑌𝑉) → (⟨“𝑋”⟩ ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
 
Theoremccatws1leng 11175 The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Revised by AV, 4-Mar-2022.)
((𝑊 ∈ Word 𝑉𝑋𝑌) → (♯‘(𝑊 ++ ⟨“𝑋”⟩)) = ((♯‘𝑊) + 1))
 
Theoremccatws1lenp1bg 11176 The length of a word is 𝑁 iff the length of the concatenation of the word with a singleton word is 𝑁 + 1. (Contributed by AV, 4-Mar-2022.)
((𝑊 ∈ Word 𝑉𝑋𝑌𝑁 ∈ ℕ0) → ((♯‘(𝑊 ++ ⟨“𝑋”⟩)) = (𝑁 + 1) ↔ (♯‘𝑊) = 𝑁))
 
Theoremccatw2s1cl 11177 The concatenation of a word with two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉𝑌𝑉) → ((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩) ∈ Word 𝑉)
 
Theoremccats1val1g 11178 Value of a symbol in the left half of a word concatenated with a single symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by JJ, 20-Jan-2024.)
((𝑊 ∈ Word 𝑉𝑆𝑌𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = (𝑊𝐼))
 
Theoremccats1val2 11179 Value of the symbol concatenated with a word. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Proof shortened by Alexander van der Vekens, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑆𝑉𝐼 = (♯‘𝑊)) → ((𝑊 ++ ⟨“𝑆”⟩)‘𝐼) = 𝑆)
 
Theoremccat1st1st 11180 The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if 𝑊 is the empty word. (Contributed by AV, 26-Mar-2022.)
(𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘0) = (𝑊‘0))
 
Theoremccatws1ls 11181 The last symbol of the concatenation of a word with a singleton word is the symbol of the singleton word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
((𝑊 ∈ Word 𝑉𝑋𝑉) → ((𝑊 ++ ⟨“𝑋”⟩)‘(♯‘𝑊)) = 𝑋)
 
Theoremlswccats1 11182 The last symbol of a word concatenated with a singleton word is the symbol of the singleton word. (Contributed by AV, 6-Aug-2018.)
((𝑊 ∈ Word 𝑉𝑆𝑉) → (lastS‘(𝑊 ++ ⟨“𝑆”⟩)) = 𝑆)
 
Theoremlswccats1fst 11183 The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.)
((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
 
Theoremccatw2s1p2 11184 Extract the second of two single symbols concatenated with a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) (Proof shortened by AV, 1-May-2020.)
(((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁) ∧ (𝑋𝑉𝑌𝑉)) → (((𝑊 ++ ⟨“𝑋”⟩) ++ ⟨“𝑌”⟩)‘(𝑁 + 1)) = 𝑌)
 
4.7.6  Subwords/substrings
 
Syntaxcsubstr 11185 Syntax for the subword operator.
class substr
 
Definitiondf-substr 11186* Define an operation which extracts portions (called subwords or substrings) of words. Definition in Section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.)
substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
 
Theoremfzowrddc 11187 Decidability of whether a range of integers is a subset of a word's domain. (Contributed by Jim Kingdon, 23-Dec-2025.)
((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID (𝐹..^𝐿) ⊆ dom 𝑆)
 
Theoremswrdval 11188* Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.)
((𝑆𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑆, (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))), ∅))
 
Theoremswrd00g 11189 A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
((𝑆𝑉𝑋 ∈ ℤ) → (𝑆 substr ⟨𝑋, 𝑋⟩) = ∅)
 
Theoremswrdclg 11190 Closure of the subword extractor. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
((𝑆 ∈ Word 𝐴𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) ∈ Word 𝐴)
 
Theoremswrdval2 11191* Value of the subword extractor in its intended domain. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 2-May-2020.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐹)) ↦ (𝑆‘(𝑥 + 𝐹))))
 
Theoremswrdlen 11192 Length of an extracted subword. (Contributed by Stefan O'Rear, 16-Aug-2015.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr ⟨𝐹, 𝐿⟩)) = (𝐿𝐹))
 
Theoremswrdfv 11193 A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015.)
(((𝑆 ∈ Word 𝐴𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) ∧ 𝑋 ∈ (0..^(𝐿𝐹))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘𝑋) = (𝑆‘(𝑋 + 𝐹)))
 
Theoremswrdfv0 11194 The first symbol in an extracted subword. (Contributed by AV, 27-Apr-2022.)
((𝑆 ∈ Word 𝐴𝐹 ∈ (0..^𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → ((𝑆 substr ⟨𝐹, 𝐿⟩)‘0) = (𝑆𝐹))
 
Theoremswrdf 11195 A subword of a word is a function from a half-open range of nonnegative integers of the same length as the subword to the set of symbols for the original word. (Contributed by AV, 13-Nov-2018.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝑀, 𝑁⟩):(0..^(𝑁𝑀))⟶𝑉)
 
Theoremswrdvalfn 11196 Value of the subword extractor as function with domain. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑆 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝐹, 𝐿⟩) Fn (0..^(𝐿𝐹)))
 
Theoremswrdrn 11197 The range of a subword of a word is a subset of the set of symbols for the word. (Contributed by AV, 13-Nov-2018.)
((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) ⊆ 𝑉)
 
Theoremswrdlend 11198 The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
 
Theoremswrdnd 11199 The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
 
Theoremswrd0g 11200 A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018.) (Revised by AV, 20-Oct-2018.) (Proof shortened by AV, 2-May-2020.)
((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (∅ substr ⟨𝐹, 𝐿⟩) = ∅)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16482
  Copyright terms: Public domain < Previous  Next >