| Step | Hyp | Ref
| Expression |
| 1 | | lencl 11015 |
. . 3
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈
ℕ0) |
| 2 | | eqeq2 2216 |
. . . . . 6
⊢ (𝑛 = 0 →
((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0)) |
| 3 | 2 | imbi1d 231 |
. . . . 5
⊢ (𝑛 = 0 →
(((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 0 → 𝜑))) |
| 4 | 3 | ralbidv 2507 |
. . . 4
⊢ (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑))) |
| 5 | | eqeq2 2216 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚)) |
| 6 | 5 | imbi1d 231 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = 𝑚 → 𝜑))) |
| 7 | 6 | ralbidv 2507 |
. . . 4
⊢ (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑))) |
| 8 | | eqeq2 2216 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1))) |
| 9 | 8 | imbi1d 231 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
| 10 | 9 | ralbidv 2507 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
| 11 | | eqeq2 2216 |
. . . . . 6
⊢ (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴))) |
| 12 | 11 | imbi1d 231 |
. . . . 5
⊢ (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = 𝑛 → 𝜑) ↔ ((♯‘𝑥) = (♯‘𝐴) → 𝜑))) |
| 13 | 12 | ralbidv 2507 |
. . . 4
⊢ (𝑛 = (♯‘𝐴) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛 → 𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))) |
| 14 | | wrdfin 11030 |
. . . . . . 7
⊢ (𝑥 ∈ Word 𝐵 → 𝑥 ∈ Fin) |
| 15 | | fihasheq0 10955 |
. . . . . . 7
⊢ (𝑥 ∈ Fin →
((♯‘𝑥) = 0
↔ 𝑥 =
∅)) |
| 16 | 14, 15 | syl 14 |
. . . . . 6
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) |
| 17 | | wrdind.5 |
. . . . . . 7
⊢ 𝜓 |
| 18 | | wrdind.1 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| 19 | 17, 18 | mpbiri 168 |
. . . . . 6
⊢ (𝑥 = ∅ → 𝜑) |
| 20 | 16, 19 | biimtrdi 163 |
. . . . 5
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 → 𝜑)) |
| 21 | 20 | rgen 2560 |
. . . 4
⊢
∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 0 → 𝜑) |
| 22 | | fveqeq2 5597 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚)) |
| 23 | | wrdind.2 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| 24 | 22, 23 | imbi12d 234 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (((♯‘𝑥) = 𝑚 → 𝜑) ↔ ((♯‘𝑦) = 𝑚 → 𝜒))) |
| 25 | 24 | cbvralvw 2743 |
. . . . 5
⊢
(∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) ↔ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) |
| 26 | | simprl 529 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵) |
| 27 | | fzossfz 10303 |
. . . . . . . . . . . . . 14
⊢
(0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥)) |
| 28 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) = (𝑚 + 1)) |
| 29 | | nn0p1nn 9349 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ) |
| 30 | 29 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ) |
| 31 | 28, 30 | eqeltrd 2283 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) ∈
ℕ) |
| 32 | | fzo0end 10369 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑥)
∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥))) |
| 33 | 31, 32 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0..^(♯‘𝑥))) |
| 34 | 27, 33 | sselid 3195 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈
(0...(♯‘𝑥))) |
| 35 | | pfxlen 11156 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
| 36 | 26, 34, 35 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) =
((♯‘𝑥) −
1)) |
| 37 | 28 | oveq1d 5971 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) −
1)) |
| 38 | | nn0cn 9320 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ0
→ 𝑚 ∈
ℂ) |
| 39 | 38 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ) |
| 40 | | ax-1cn 8033 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 41 | | pncan 8293 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
| 42 | 39, 40, 41 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚) |
| 43 | 36, 37, 42 | 3eqtrd 2243 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚) |
| 44 | | fveqeq2 5597 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)) |
| 45 | | vex 2776 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ V |
| 46 | 45, 23 | sbcie 3037 |
. . . . . . . . . . . . . 14
⊢
([𝑦 / 𝑥]𝜑 ↔ 𝜒) |
| 47 | | dfsbcq 3004 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥]𝜑 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
| 48 | 46, 47 | bitr3id 194 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝜒 ↔ [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
| 49 | 44, 48 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (((♯‘𝑦) = 𝑚 → 𝜒) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))) |
| 50 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒)) |
| 51 | | lencl 11015 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝐵 → (♯‘𝑥) ∈
ℕ0) |
| 52 | 51 | nn0zd 9508 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Word 𝐵 → (♯‘𝑥) ∈ ℤ) |
| 53 | | 1zzd 9414 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ Word 𝐵 → 1 ∈ ℤ) |
| 54 | 52, 53 | zsubcld 9515 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) − 1) ∈ ℤ) |
| 55 | | pfxclz 11150 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ ℤ) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) |
| 56 | 54, 55 | mpdan 421 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) |
| 57 | 56 | ad2antrl 490 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵) |
| 58 | 49, 50, 57 | rspcdva 2886 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚 → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)) |
| 59 | 43, 58 | mpd 13 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑) |
| 60 | 31 | nnge1d 9094 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 1 ≤ (♯‘𝑥)) |
| 61 | | wrdlenge1n0 11044 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
| 62 | 61 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤
(♯‘𝑥))) |
| 63 | 60, 62 | mpbird 167 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) |
| 64 | | lswcl 11061 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝐵) |
| 65 | 26, 63, 64 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (lastS‘𝑥) ∈ 𝐵) |
| 66 | | oveq1 5963 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉)) |
| 67 | 66 | sbceq1d 3007 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
| 68 | 47, 67 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑))) |
| 69 | | s1eq 11091 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (lastS‘𝑥) → 〈“𝑧”〉 =
〈“(lastS‘𝑥)”〉) |
| 70 | 69 | oveq2d 5972 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
| 71 | 70 | sbceq1d 3007 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“𝑧”〉) / 𝑥]𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
| 72 | 71 | imbi2d 230 |
. . . . . . . . . . . 12
⊢ (𝑧 = (lastS‘𝑥) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ 〈“𝑧”〉) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑))) |
| 73 | | wrdind.6 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝜒 → 𝜃)) |
| 74 | 46 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ([𝑦 / 𝑥]𝜑 ↔ 𝜒)) |
| 75 | | ccatws1cl 11104 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 ++ 〈“𝑧”〉) ∈ Word 𝐵) |
| 76 | | wrdind.3 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 ++ 〈“𝑧”〉) → (𝜑 ↔ 𝜃)) |
| 77 | 76 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥 = (𝑦 ++ 〈“𝑧”〉)) → (𝜑 ↔ 𝜃)) |
| 78 | 75, 77 | sbcied 3039 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ([(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑 ↔ 𝜃)) |
| 79 | 73, 74, 78 | 3imtr4d 203 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵) → ([𝑦 / 𝑥]𝜑 → [(𝑦 ++ 〈“𝑧”〉) / 𝑥]𝜑)) |
| 80 | 68, 72, 79 | vtocl2ga 2843 |
. . . . . . . . . . 11
⊢ (((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵 ∧ (lastS‘𝑥) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
| 81 | 57, 65, 80 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑 → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
| 82 | 59, 81 | mpd 13 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑) |
| 83 | 14 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin) |
| 84 | | hashnncl 10957 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ Fin →
((♯‘𝑥) ∈
ℕ ↔ 𝑥 ≠
∅)) |
| 85 | 83, 84 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅)) |
| 86 | 31, 85 | mpbid 147 |
. . . . . . . . . . 11
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅) |
| 87 | | pfxlswccat 11184 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) = 𝑥) |
| 88 | 87 | eqcomd 2212 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ Word 𝐵 ∧ 𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
| 89 | 26, 86, 88 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉)) |
| 90 | | sbceq1a 3012 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
| 91 | 89, 90 | syl 14 |
. . . . . . . . 9
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝜑 ↔ [((𝑥 prefix ((♯‘𝑥) − 1)) ++
〈“(lastS‘𝑥)”〉) / 𝑥]𝜑)) |
| 92 | 82, 91 | mpbird 167 |
. . . . . . . 8
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝜑) |
| 93 | 92 | expr 375 |
. . . . . . 7
⊢ (((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((♯‘𝑥) = (𝑚 + 1) → 𝜑)) |
| 94 | 93 | ralrimiva 2580 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ0
∧ ∀𝑦 ∈ Word
𝐵((♯‘𝑦) = 𝑚 → 𝜒)) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)) |
| 95 | 94 | ex 115 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ (∀𝑦 ∈
Word 𝐵((♯‘𝑦) = 𝑚 → 𝜒) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
| 96 | 25, 95 | biimtrid 152 |
. . . 4
⊢ (𝑚 ∈ ℕ0
→ (∀𝑥 ∈
Word 𝐵((♯‘𝑥) = 𝑚 → 𝜑) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))) |
| 97 | 4, 7, 10, 13, 21, 96 | nn0ind 9502 |
. . 3
⊢
((♯‘𝐴)
∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) |
| 98 | 1, 97 | syl 14 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)) |
| 99 | | eqidd 2207 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → (♯‘𝐴) = (♯‘𝐴)) |
| 100 | | fveqeq2 5597 |
. . . 4
⊢ (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴))) |
| 101 | | wrdind.4 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| 102 | 100, 101 | imbi12d 234 |
. . 3
⊢ (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐴) → 𝜑) ↔ ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
| 103 | 102 | rspcv 2877 |
. 2
⊢ (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏))) |
| 104 | 98, 99, 103 | mp2d 47 |
1
⊢ (𝐴 ∈ Word 𝐵 → 𝜏) |