ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wrdind GIF version

Theorem wrdind 11262
Description: Perform induction over the structure of a word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 12-Oct-2022.)
Hypotheses
Ref Expression
wrdind.1 (𝑥 = ∅ → (𝜑𝜓))
wrdind.2 (𝑥 = 𝑦 → (𝜑𝜒))
wrdind.3 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
wrdind.4 (𝑥 = 𝐴 → (𝜑𝜏))
wrdind.5 𝜓
wrdind.6 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
Assertion
Ref Expression
wrdind (𝐴 ∈ Word 𝐵𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑧,𝐵   𝜒,𝑥   𝜑,𝑦,𝑧   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)   𝐴(𝑦,𝑧)

Proof of Theorem wrdind
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lencl 11083 . . 3 (𝐴 ∈ Word 𝐵 → (♯‘𝐴) ∈ ℕ0)
2 eqeq2 2239 . . . . . 6 (𝑛 = 0 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 0))
32imbi1d 231 . . . . 5 (𝑛 = 0 → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = 0 → 𝜑)))
43ralbidv 2530 . . . 4 (𝑛 = 0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑)))
5 eqeq2 2239 . . . . . 6 (𝑛 = 𝑚 → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = 𝑚))
65imbi1d 231 . . . . 5 (𝑛 = 𝑚 → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = 𝑚𝜑)))
76ralbidv 2530 . . . 4 (𝑛 = 𝑚 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑)))
8 eqeq2 2239 . . . . . 6 (𝑛 = (𝑚 + 1) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (𝑚 + 1)))
98imbi1d 231 . . . . 5 (𝑛 = (𝑚 + 1) → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
109ralbidv 2530 . . . 4 (𝑛 = (𝑚 + 1) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
11 eqeq2 2239 . . . . . 6 (𝑛 = (♯‘𝐴) → ((♯‘𝑥) = 𝑛 ↔ (♯‘𝑥) = (♯‘𝐴)))
1211imbi1d 231 . . . . 5 (𝑛 = (♯‘𝐴) → (((♯‘𝑥) = 𝑛𝜑) ↔ ((♯‘𝑥) = (♯‘𝐴) → 𝜑)))
1312ralbidv 2530 . . . 4 (𝑛 = (♯‘𝐴) → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑛𝜑) ↔ ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑)))
14 wrdfin 11098 . . . . . . 7 (𝑥 ∈ Word 𝐵𝑥 ∈ Fin)
15 fihasheq0 11023 . . . . . . 7 (𝑥 ∈ Fin → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
1614, 15syl 14 . . . . . 6 (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
17 wrdind.5 . . . . . . 7 𝜓
18 wrdind.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
1917, 18mpbiri 168 . . . . . 6 (𝑥 = ∅ → 𝜑)
2016, 19biimtrdi 163 . . . . 5 (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) = 0 → 𝜑))
2120rgen 2583 . . . 4 𝑥 ∈ Word 𝐵((♯‘𝑥) = 0 → 𝜑)
22 fveqeq2 5638 . . . . . . 7 (𝑥 = 𝑦 → ((♯‘𝑥) = 𝑚 ↔ (♯‘𝑦) = 𝑚))
23 wrdind.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
2422, 23imbi12d 234 . . . . . 6 (𝑥 = 𝑦 → (((♯‘𝑥) = 𝑚𝜑) ↔ ((♯‘𝑦) = 𝑚𝜒)))
2524cbvralvw 2769 . . . . 5 (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑) ↔ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒))
26 simprl 529 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Word 𝐵)
27 fzossfz 10370 . . . . . . . . . . . . . 14 (0..^(♯‘𝑥)) ⊆ (0...(♯‘𝑥))
28 simprr 531 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) = (𝑚 + 1))
29 nn0p1nn 9416 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
3029ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑚 + 1) ∈ ℕ)
3128, 30eqeltrd 2306 . . . . . . . . . . . . . . 15 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘𝑥) ∈ ℕ)
32 fzo0end 10437 . . . . . . . . . . . . . . 15 ((♯‘𝑥) ∈ ℕ → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
3331, 32syl 14 . . . . . . . . . . . . . 14 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈ (0..^(♯‘𝑥)))
3427, 33sselid 3222 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥)))
35 pfxlen 11225 . . . . . . . . . . . . 13 ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ (0...(♯‘𝑥))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
3626, 34, 35syl2anc 411 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = ((♯‘𝑥) − 1))
3728oveq1d 6022 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) − 1) = ((𝑚 + 1) − 1))
38 nn0cn 9387 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ0𝑚 ∈ ℂ)
3938ad2antrr 488 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑚 ∈ ℂ)
40 ax-1cn 8100 . . . . . . . . . . . . 13 1 ∈ ℂ
41 pncan 8360 . . . . . . . . . . . . 13 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
4239, 40, 41sylancl 413 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((𝑚 + 1) − 1) = 𝑚)
4336, 37, 423eqtrd 2266 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚)
44 fveqeq2 5638 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ((♯‘𝑦) = 𝑚 ↔ (♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚))
45 vex 2802 . . . . . . . . . . . . . . 15 𝑦 ∈ V
4645, 23sbcie 3063 . . . . . . . . . . . . . 14 ([𝑦 / 𝑥]𝜑𝜒)
47 dfsbcq 3030 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([𝑦 / 𝑥]𝜑[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
4846, 47bitr3id 194 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝜒[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
4944, 48imbi12d 234 . . . . . . . . . . . 12 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (((♯‘𝑦) = 𝑚𝜒) ↔ ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)))
50 simplr 528 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒))
51 lencl 11083 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝐵 → (♯‘𝑥) ∈ ℕ0)
5251nn0zd 9575 . . . . . . . . . . . . . . 15 (𝑥 ∈ Word 𝐵 → (♯‘𝑥) ∈ ℤ)
53 1zzd 9481 . . . . . . . . . . . . . . 15 (𝑥 ∈ Word 𝐵 → 1 ∈ ℤ)
5452, 53zsubcld 9582 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵 → ((♯‘𝑥) − 1) ∈ ℤ)
55 pfxclz 11219 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word 𝐵 ∧ ((♯‘𝑥) − 1) ∈ ℤ) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵)
5654, 55mpdan 421 . . . . . . . . . . . . 13 (𝑥 ∈ Word 𝐵 → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵)
5756ad2antrl 490 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵)
5849, 50, 57rspcdva 2912 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘(𝑥 prefix ((♯‘𝑥) − 1))) = 𝑚[(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑))
5943, 58mpd 13 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑)
6031nnge1d 9161 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 1 ≤ (♯‘𝑥))
61 wrdlenge1n0 11113 . . . . . . . . . . . . . 14 (𝑥 ∈ Word 𝐵 → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
6261ad2antrl 490 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝑥 ≠ ∅ ↔ 1 ≤ (♯‘𝑥)))
6360, 62mpbird 167 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
64 lswcl 11130 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → (lastS‘𝑥) ∈ 𝐵)
6526, 63, 64syl2anc 411 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (lastS‘𝑥) ∈ 𝐵)
66 oveq1 6014 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (𝑦 ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩))
6766sbceq1d 3033 . . . . . . . . . . . . 13 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
6847, 67imbi12d 234 . . . . . . . . . . . 12 (𝑦 = (𝑥 prefix ((♯‘𝑥) − 1)) → (([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑)))
69 s1eq 11160 . . . . . . . . . . . . . . 15 (𝑧 = (lastS‘𝑥) → ⟨“𝑧”⟩ = ⟨“(lastS‘𝑥)”⟩)
7069oveq2d 6023 . . . . . . . . . . . . . 14 (𝑧 = (lastS‘𝑥) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
7170sbceq1d 3033 . . . . . . . . . . . . 13 (𝑧 = (lastS‘𝑥) → ([((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
7271imbi2d 230 . . . . . . . . . . . 12 (𝑧 = (lastS‘𝑥) → (([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“𝑧”⟩) / 𝑥]𝜑) ↔ ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑)))
73 wrdind.6 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝜒𝜃))
7446a1i 9 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([𝑦 / 𝑥]𝜑𝜒))
75 ccatws1cl 11173 . . . . . . . . . . . . . 14 ((𝑦 ∈ Word 𝐵𝑧𝐵) → (𝑦 ++ ⟨“𝑧”⟩) ∈ Word 𝐵)
76 wrdind.3 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 ++ ⟨“𝑧”⟩) → (𝜑𝜃))
7776adantl 277 . . . . . . . . . . . . . 14 (((𝑦 ∈ Word 𝐵𝑧𝐵) ∧ 𝑥 = (𝑦 ++ ⟨“𝑧”⟩)) → (𝜑𝜃))
7875, 77sbcied 3065 . . . . . . . . . . . . 13 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑𝜃))
7973, 74, 783imtr4d 203 . . . . . . . . . . . 12 ((𝑦 ∈ Word 𝐵𝑧𝐵) → ([𝑦 / 𝑥]𝜑[(𝑦 ++ ⟨“𝑧”⟩) / 𝑥]𝜑))
8068, 72, 79vtocl2ga 2869 . . . . . . . . . . 11 (((𝑥 prefix ((♯‘𝑥) − 1)) ∈ Word 𝐵 ∧ (lastS‘𝑥) ∈ 𝐵) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
8157, 65, 80syl2anc 411 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ([(𝑥 prefix ((♯‘𝑥) − 1)) / 𝑥]𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
8259, 81mpd 13 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → [((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑)
8314ad2antrl 490 . . . . . . . . . . . . 13 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ∈ Fin)
84 hashnncl 11025 . . . . . . . . . . . . 13 (𝑥 ∈ Fin → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
8583, 84syl 14 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → ((♯‘𝑥) ∈ ℕ ↔ 𝑥 ≠ ∅))
8631, 85mpbid 147 . . . . . . . . . . 11 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 ≠ ∅)
87 pfxlswccat 11253 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) = 𝑥)
8887eqcomd 2235 . . . . . . . . . . 11 ((𝑥 ∈ Word 𝐵𝑥 ≠ ∅) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
8926, 86, 88syl2anc 411 . . . . . . . . . 10 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩))
90 sbceq1a 3038 . . . . . . . . . 10 (𝑥 = ((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
9189, 90syl 14 . . . . . . . . 9 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → (𝜑[((𝑥 prefix ((♯‘𝑥) − 1)) ++ ⟨“(lastS‘𝑥)”⟩) / 𝑥]𝜑))
9282, 91mpbird 167 . . . . . . . 8 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ (𝑥 ∈ Word 𝐵 ∧ (♯‘𝑥) = (𝑚 + 1))) → 𝜑)
9392expr 375 . . . . . . 7 (((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) ∧ 𝑥 ∈ Word 𝐵) → ((♯‘𝑥) = (𝑚 + 1) → 𝜑))
9493ralrimiva 2603 . . . . . 6 ((𝑚 ∈ ℕ0 ∧ ∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒)) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑))
9594ex 115 . . . . 5 (𝑚 ∈ ℕ0 → (∀𝑦 ∈ Word 𝐵((♯‘𝑦) = 𝑚𝜒) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
9625, 95biimtrid 152 . . . 4 (𝑚 ∈ ℕ0 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = 𝑚𝜑) → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (𝑚 + 1) → 𝜑)))
974, 7, 10, 13, 21, 96nn0ind 9569 . . 3 ((♯‘𝐴) ∈ ℕ0 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))
981, 97syl 14 . 2 (𝐴 ∈ Word 𝐵 → ∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑))
99 eqidd 2230 . 2 (𝐴 ∈ Word 𝐵 → (♯‘𝐴) = (♯‘𝐴))
100 fveqeq2 5638 . . . 4 (𝑥 = 𝐴 → ((♯‘𝑥) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐴)))
101 wrdind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
102100, 101imbi12d 234 . . 3 (𝑥 = 𝐴 → (((♯‘𝑥) = (♯‘𝐴) → 𝜑) ↔ ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
103102rspcv 2903 . 2 (𝐴 ∈ Word 𝐵 → (∀𝑥 ∈ Word 𝐵((♯‘𝑥) = (♯‘𝐴) → 𝜑) → ((♯‘𝐴) = (♯‘𝐴) → 𝜏)))
10498, 99, 103mp2d 47 1 (𝐴 ∈ Word 𝐵𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508  [wsbc 3028  c0 3491   class class class wbr 4083  cfv 5318  (class class class)co 6007  Fincfn 6895  cc 8005  0cc0 8007  1c1 8008   + caddc 8010  cle 8190  cmin 8325  cn 9118  0cn0 9377  cz 9454  ...cfz 10212  ..^cfzo 10346  chash 11005  Word cword 11079  lastSclsw 11124   ++ cconcat 11133  ⟨“cs1 11156   prefix cpfx 11212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-lsw 11125  df-concat 11134  df-s1 11157  df-substr 11186  df-pfx 11213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator