![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq2 3806 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 〈cop 3622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 |
This theorem is referenced by: tfr1onlemaccex 6403 tfrcllemaccex 6416 fundmen 6862 exmidapne 7322 recexnq 7452 suplocexprlemex 7784 elreal2 7892 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 frecuzrdgsuctlem 10497 seqeq2 10525 seqeq3 10526 iseqvalcbv 10533 seq3val 10534 seqvalcd 10535 eucalgval 12195 ennnfonelemp1 12566 ennnfonelemnn0 12582 strsetsid 12654 ressvalsets 12685 strressid 12692 ressinbasd 12695 ressressg 12696 prdsex 12883 imasex 12891 imasival 12892 imasaddvallemg 12901 xpsfval 12934 xpsval 12938 mgpvalg 13422 mgpress 13430 ring1 13558 opprvalg 13568 sraval 13936 zlmval 14126 znval 14135 znval2 14137 psrval 14163 |
Copyright terms: Public domain | W3C validator |