![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version |
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | opeq2 3623 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 〈cop 3449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 df-op 3455 |
This theorem is referenced by: tfr1onlemaccex 6113 tfrcllemaccex 6126 fundmen 6523 recexnq 6949 elreal2 7368 frecuzrdgrrn 9815 frec2uzrdg 9816 frecuzrdgrcl 9817 frecuzrdgsuc 9821 frecuzrdgrclt 9822 frecuzrdgg 9823 frecuzrdgsuctlem 9830 iseqeq2 9859 iseqeq3 9860 iseqval 9871 iseqvalcbv 9872 iseqvalt 9873 seq3val 9874 eucalgval 11314 strsetsid 11527 ressid2 11552 ressval2 11553 |
Copyright terms: Public domain | W3C validator |