| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq2 3826 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 〈cop 3641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 |
| This theorem is referenced by: tfr1onlemaccex 6447 tfrcllemaccex 6460 fundmen 6912 exmidapne 7392 recexnq 7523 suplocexprlemex 7855 elreal2 7963 frecuzrdgrrn 10575 frec2uzrdg 10576 frecuzrdgrcl 10577 frecuzrdgsuc 10581 frecuzrdgrclt 10582 frecuzrdgg 10583 frecuzrdgsuctlem 10590 seqeq2 10618 seqeq3 10619 iseqvalcbv 10626 seq3val 10627 seqvalcd 10628 s1val 11094 s1eq 11096 s1prc 11100 swrdlsw 11145 pfxpfx 11184 eucalgval 12451 ennnfonelemp1 12852 ennnfonelemnn0 12868 strsetsid 12940 ressvalsets 12971 strressid 12978 ressinbasd 12981 ressressg 12982 prdsex 13176 prdsval 13180 imasex 13212 imasival 13213 imasaddvallemg 13222 xpsfval 13255 xpsval 13259 mgpvalg 13760 mgpress 13768 ring1 13896 opprvalg 13906 sraval 14274 zlmval 14464 znval 14473 znval2 14475 psrval 14503 |
| Copyright terms: Public domain | W3C validator |