ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d GIF version

Theorem opeq2d 3811
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq2d (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq2 3805 . 2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cop 3621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627
This theorem is referenced by:  tfr1onlemaccex  6401  tfrcllemaccex  6414  fundmen  6860  exmidapne  7320  recexnq  7450  suplocexprlemex  7782  elreal2  7890  frecuzrdgrrn  10479  frec2uzrdg  10480  frecuzrdgrcl  10481  frecuzrdgsuc  10485  frecuzrdgrclt  10486  frecuzrdgg  10487  frecuzrdgsuctlem  10494  seqeq2  10522  seqeq3  10523  iseqvalcbv  10530  seq3val  10531  seqvalcd  10532  eucalgval  12192  ennnfonelemp1  12563  ennnfonelemnn0  12579  strsetsid  12651  ressvalsets  12682  strressid  12689  ressinbasd  12692  ressressg  12693  prdsex  12880  imasex  12888  imasival  12889  imasaddvallemg  12898  xpsfval  12931  xpsval  12935  mgpvalg  13419  mgpress  13427  ring1  13555  opprvalg  13565  sraval  13933  zlmval  14115  znval  14124  znval2  14126  psrval  14152
  Copyright terms: Public domain W3C validator