ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d GIF version

Theorem opeq2d 3816
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq2d (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq2 3810 . 2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cop 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632
This theorem is referenced by:  tfr1onlemaccex  6415  tfrcllemaccex  6428  fundmen  6874  exmidapne  7345  recexnq  7476  suplocexprlemex  7808  elreal2  7916  frecuzrdgrrn  10519  frec2uzrdg  10520  frecuzrdgrcl  10521  frecuzrdgsuc  10525  frecuzrdgrclt  10526  frecuzrdgg  10527  frecuzrdgsuctlem  10534  seqeq2  10562  seqeq3  10563  iseqvalcbv  10570  seq3val  10571  seqvalcd  10572  eucalgval  12249  ennnfonelemp1  12650  ennnfonelemnn0  12666  strsetsid  12738  ressvalsets  12769  strressid  12776  ressinbasd  12779  ressressg  12780  prdsex  12973  prdsval  12977  imasex  13009  imasival  13010  imasaddvallemg  13019  xpsfval  13052  xpsval  13056  mgpvalg  13557  mgpress  13565  ring1  13693  opprvalg  13703  sraval  14071  zlmval  14261  znval  14270  znval2  14272  psrval  14300
  Copyright terms: Public domain W3C validator