| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq2 3810 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: tfr1onlemaccex 6415 tfrcllemaccex 6428 fundmen 6874 exmidapne 7343 recexnq 7474 suplocexprlemex 7806 elreal2 7914 frecuzrdgrrn 10517 frec2uzrdg 10518 frecuzrdgrcl 10519 frecuzrdgsuc 10523 frecuzrdgrclt 10524 frecuzrdgg 10525 frecuzrdgsuctlem 10532 seqeq2 10560 seqeq3 10561 iseqvalcbv 10568 seq3val 10569 seqvalcd 10570 eucalgval 12247 ennnfonelemp1 12648 ennnfonelemnn0 12664 strsetsid 12736 ressvalsets 12767 strressid 12774 ressinbasd 12777 ressressg 12778 prdsex 12971 prdsval 12975 imasex 13007 imasival 13008 imasaddvallemg 13017 xpsfval 13050 xpsval 13054 mgpvalg 13555 mgpress 13563 ring1 13691 opprvalg 13701 sraval 14069 zlmval 14259 znval 14268 znval2 14270 psrval 14296 |
| Copyright terms: Public domain | W3C validator |