| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq2 3857 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 〈cop 3669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: tfr1onlemaccex 6492 tfrcllemaccex 6505 fundmen 6957 exmidapne 7442 recexnq 7573 suplocexprlemex 7905 elreal2 8013 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgg 10633 frecuzrdgsuctlem 10640 seqeq2 10668 seqeq3 10669 iseqvalcbv 10676 seq3val 10677 seqvalcd 10678 s1val 11145 s1eq 11147 s1prc 11151 swrdlsw 11196 pfxpfx 11235 swrdccat 11262 swrdccat3blem 11266 swrdccat3b 11267 pfxccatin12d 11272 eucalgval 12571 ennnfonelemp1 12972 ennnfonelemnn0 12988 strsetsid 13060 ressvalsets 13092 strressid 13099 ressinbasd 13102 ressressg 13103 prdsex 13297 prdsval 13301 imasex 13333 imasival 13334 imasaddvallemg 13343 xpsfval 13376 xpsval 13380 mgpvalg 13881 mgpress 13889 ring1 14017 opprvalg 14027 sraval 14395 zlmval 14585 znval 14594 znval2 14596 psrval 14624 |
| Copyright terms: Public domain | W3C validator |