ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d GIF version

Theorem opeq2d 3772
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq2d (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq2 3766 . 2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  tfr1onlemaccex  6327  tfrcllemaccex  6340  fundmen  6784  recexnq  7352  suplocexprlemex  7684  elreal2  7792  frecuzrdgrrn  10364  frec2uzrdg  10365  frecuzrdgrcl  10366  frecuzrdgsuc  10370  frecuzrdgrclt  10371  frecuzrdgg  10372  frecuzrdgsuctlem  10379  seqeq2  10405  seqeq3  10406  iseqvalcbv  10413  seq3val  10414  seqvalcd  10415  eucalgval  12008  ennnfonelemp1  12361  ennnfonelemnn0  12377  strsetsid  12449  ressid2  12477  ressval2  12478
  Copyright terms: Public domain W3C validator