| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeq2d | GIF version | ||
| Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
| Ref | Expression |
|---|---|
| opeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| opeq2d | ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | opeq2 3810 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 〈cop 3626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: tfr1onlemaccex 6415 tfrcllemaccex 6428 fundmen 6874 exmidapne 7345 recexnq 7476 suplocexprlemex 7808 elreal2 7916 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdgrcl 10521 frecuzrdgsuc 10525 frecuzrdgrclt 10526 frecuzrdgg 10527 frecuzrdgsuctlem 10534 seqeq2 10562 seqeq3 10563 iseqvalcbv 10570 seq3val 10571 seqvalcd 10572 eucalgval 12249 ennnfonelemp1 12650 ennnfonelemnn0 12666 strsetsid 12738 ressvalsets 12769 strressid 12776 ressinbasd 12779 ressressg 12780 prdsex 12973 prdsval 12977 imasex 13009 imasival 13010 imasaddvallemg 13019 xpsfval 13052 xpsval 13056 mgpvalg 13557 mgpress 13565 ring1 13693 opprvalg 13703 sraval 14071 zlmval 14261 znval 14270 znval2 14272 psrval 14300 |
| Copyright terms: Public domain | W3C validator |