ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeq2d GIF version

Theorem opeq2d 3832
Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
opeq2d (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)

Proof of Theorem opeq2d
StepHypRef Expression
1 opeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 opeq2 3826 . 2 (𝐴 = 𝐵 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
31, 2syl 14 1 (𝜑 → ⟨𝐶, 𝐴⟩ = ⟨𝐶, 𝐵⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cop 3641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647
This theorem is referenced by:  tfr1onlemaccex  6447  tfrcllemaccex  6460  fundmen  6912  exmidapne  7392  recexnq  7523  suplocexprlemex  7855  elreal2  7963  frecuzrdgrrn  10575  frec2uzrdg  10576  frecuzrdgrcl  10577  frecuzrdgsuc  10581  frecuzrdgrclt  10582  frecuzrdgg  10583  frecuzrdgsuctlem  10590  seqeq2  10618  seqeq3  10619  iseqvalcbv  10626  seq3val  10627  seqvalcd  10628  s1val  11094  s1eq  11096  s1prc  11100  swrdlsw  11145  pfxpfx  11184  eucalgval  12451  ennnfonelemp1  12852  ennnfonelemnn0  12868  strsetsid  12940  ressvalsets  12971  strressid  12978  ressinbasd  12981  ressressg  12982  prdsex  13176  prdsval  13180  imasex  13212  imasival  13213  imasaddvallemg  13222  xpsfval  13255  xpsval  13259  mgpvalg  13760  mgpress  13768  ring1  13896  opprvalg  13906  sraval  14274  zlmval  14464  znval  14473  znval2  14475  psrval  14503
  Copyright terms: Public domain W3C validator