ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass2 GIF version

Theorem imass2 4915
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
imass2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem imass2
StepHypRef Expression
1 ssres2 4846 . . 3 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
2 rnss 4769 . . 3 ((𝐶𝐴) ⊆ (𝐶𝐵) → ran (𝐶𝐴) ⊆ ran (𝐶𝐵))
31, 2syl 14 . 2 (𝐴𝐵 → ran (𝐶𝐴) ⊆ ran (𝐶𝐵))
4 df-ima 4552 . 2 (𝐶𝐴) = ran (𝐶𝐴)
5 df-ima 4552 . 2 (𝐶𝐵) = ran (𝐶𝐵)
63, 4, 53sstr4g 3140 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3071  ran crn 4540  cres 4541  cima 4542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552
This theorem is referenced by:  funimass1  5200  funimass2  5201  fvimacnv  5535  f1imass  5675  ecinxp  6504  sbthlem1  6845  sbthlem2  6846  iscnp4  12397  cnptopco  12401  cnntri  12403  cnrest2  12415  cnptopresti  12417  cnptoprest  12418  metcnp3  12690
  Copyright terms: Public domain W3C validator