ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imass2 GIF version

Theorem imass2 5042
Description: Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
imass2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem imass2
StepHypRef Expression
1 ssres2 4970 . . 3 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
2 rnss 4893 . . 3 ((𝐶𝐴) ⊆ (𝐶𝐵) → ran (𝐶𝐴) ⊆ ran (𝐶𝐵))
31, 2syl 14 . 2 (𝐴𝐵 → ran (𝐶𝐴) ⊆ ran (𝐶𝐵))
4 df-ima 4673 . 2 (𝐶𝐴) = ran (𝐶𝐴)
5 df-ima 4673 . 2 (𝐶𝐵) = ran (𝐶𝐵)
63, 4, 53sstr4g 3223 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3154  ran crn 4661  cres 4662  cima 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673
This theorem is referenced by:  funimass1  5332  funimass2  5333  fvimacnv  5674  f1imass  5818  ecinxp  6666  sbthlem1  7018  sbthlem2  7019  iscnp4  14397  cnptopco  14401  cnntri  14403  cnrest2  14415  cnptopresti  14417  cnptoprest  14418  metcnp3  14690
  Copyright terms: Public domain W3C validator