| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1stcof | GIF version | ||
| Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) | 
| Ref | Expression | 
|---|---|
| 1stcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fo1st 6215 | . . . 4 ⊢ 1st :V–onto→V | |
| 2 | fofn 5482 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 1st Fn V | 
| 4 | ffn 5407 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
| 5 | dffn2 5409 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) | 
| 7 | fnfco 5432 | . . 3 ⊢ ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st ∘ 𝐹) Fn 𝐴) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹) Fn 𝐴) | 
| 9 | rnco 5176 | . . 3 ⊢ ran (1st ∘ 𝐹) = ran (1st ↾ ran 𝐹) | |
| 10 | frn 5416 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
| 11 | ssres2 4973 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶))) | |
| 12 | rnss 4896 | . . . . 5 ⊢ ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | |
| 13 | 10, 11, 12 | 3syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | 
| 14 | f1stres 6217 | . . . . 5 ⊢ (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 | |
| 15 | frn 5416 | . . . . 5 ⊢ ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵 | 
| 17 | 13, 16 | sstrdi 3195 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵) | 
| 18 | 9, 17 | eqsstrid 3229 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ∘ 𝐹) ⊆ 𝐵) | 
| 19 | df-f 5262 | . 2 ⊢ ((1st ∘ 𝐹):𝐴⟶𝐵 ↔ ((1st ∘ 𝐹) Fn 𝐴 ∧ ran (1st ∘ 𝐹) ⊆ 𝐵)) | |
| 20 | 8, 18, 19 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 Vcvv 2763 ⊆ wss 3157 × cxp 4661 ran crn 4664 ↾ cres 4665 ∘ ccom 4667 Fn wfn 5253 ⟶wf 5254 –onto→wfo 5256 1st c1st 6196 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |