ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stcof GIF version

Theorem 1stcof 6131
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 6125 . . . 4 1st :V–onto→V
2 fofn 5412 . . . 4 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . 3 1st Fn V
4 ffn 5337 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 5339 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 121 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 5362 . . 3 ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st𝐹) Fn 𝐴)
83, 6, 7sylancr 411 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹) Fn 𝐴)
9 rnco 5110 . . 3 ran (1st𝐹) = ran (1st ↾ ran 𝐹)
10 frn 5346 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 4911 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)))
12 rnss 4834 . . . . 5 ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 17 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
14 f1stres 6127 . . . . 5 (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵
15 frn 5346 . . . . 5 ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵)
1614, 15ax-mp 5 . . . 4 ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵
1713, 16sstrdi 3154 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵)
189, 17eqsstrid 3188 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st𝐹) ⊆ 𝐵)
19 df-f 5192 . 2 ((1st𝐹):𝐴𝐵 ↔ ((1st𝐹) Fn 𝐴 ∧ ran (1st𝐹) ⊆ 𝐵))
208, 18, 19sylanbrc 414 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2726  wss 3116   × cxp 4602  ran crn 4605  cres 4606  ccom 4608   Fn wfn 5183  wf 5184  ontowfo 5186  1st c1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator