ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stcof GIF version

Theorem 1stcof 6054
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 6048 . . . 4 1st :V–onto→V
2 fofn 5342 . . . 4 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . 3 1st Fn V
4 ffn 5267 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 5269 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 121 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 5292 . . 3 ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st𝐹) Fn 𝐴)
83, 6, 7sylancr 410 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹) Fn 𝐴)
9 rnco 5040 . . 3 ran (1st𝐹) = ran (1st ↾ ran 𝐹)
10 frn 5276 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 4841 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)))
12 rnss 4764 . . . . 5 ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 17 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
14 f1stres 6050 . . . . 5 (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵
15 frn 5276 . . . . 5 ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵)
1614, 15ax-mp 5 . . . 4 ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵
1713, 16sstrdi 3104 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵)
189, 17eqsstrid 3138 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st𝐹) ⊆ 𝐵)
19 df-f 5122 . 2 ((1st𝐹):𝐴𝐵 ↔ ((1st𝐹) Fn 𝐴 ∧ ran (1st𝐹) ⊆ 𝐵))
208, 18, 19sylanbrc 413 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2681  wss 3066   × cxp 4532  ran crn 4535  cres 4536  ccom 4538   Fn wfn 5113  wf 5114  ontowfo 5116  1st c1st 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124  df-fv 5126  df-1st 6031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator