ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stcof GIF version

Theorem 1stcof 6164
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ (1st āˆ˜ š¹):š“āŸ¶šµ)

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 6158 . . . 4 1st :Vā€“ontoā†’V
2 fofn 5441 . . . 4 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
31, 2ax-mp 5 . . 3 1st Fn V
4 ffn 5366 . . . 4 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ š¹ Fn š“)
5 dffn2 5368 . . . 4 (š¹ Fn š“ ā†” š¹:š“āŸ¶V)
64, 5sylib 122 . . 3 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ š¹:š“āŸ¶V)
7 fnfco 5391 . . 3 ((1st Fn V āˆ§ š¹:š“āŸ¶V) ā†’ (1st āˆ˜ š¹) Fn š“)
83, 6, 7sylancr 414 . 2 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ (1st āˆ˜ š¹) Fn š“)
9 rnco 5136 . . 3 ran (1st āˆ˜ š¹) = ran (1st ā†¾ ran š¹)
10 frn 5375 . . . . 5 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ ran š¹ āŠ† (šµ Ɨ š¶))
11 ssres2 4935 . . . . 5 (ran š¹ āŠ† (šµ Ɨ š¶) ā†’ (1st ā†¾ ran š¹) āŠ† (1st ā†¾ (šµ Ɨ š¶)))
12 rnss 4858 . . . . 5 ((1st ā†¾ ran š¹) āŠ† (1st ā†¾ (šµ Ɨ š¶)) ā†’ ran (1st ā†¾ ran š¹) āŠ† ran (1st ā†¾ (šµ Ɨ š¶)))
1310, 11, 123syl 17 . . . 4 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ ran (1st ā†¾ ran š¹) āŠ† ran (1st ā†¾ (šµ Ɨ š¶)))
14 f1stres 6160 . . . . 5 (1st ā†¾ (šµ Ɨ š¶)):(šµ Ɨ š¶)āŸ¶šµ
15 frn 5375 . . . . 5 ((1st ā†¾ (šµ Ɨ š¶)):(šµ Ɨ š¶)āŸ¶šµ ā†’ ran (1st ā†¾ (šµ Ɨ š¶)) āŠ† šµ)
1614, 15ax-mp 5 . . . 4 ran (1st ā†¾ (šµ Ɨ š¶)) āŠ† šµ
1713, 16sstrdi 3168 . . 3 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ ran (1st ā†¾ ran š¹) āŠ† šµ)
189, 17eqsstrid 3202 . 2 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ ran (1st āˆ˜ š¹) āŠ† šµ)
19 df-f 5221 . 2 ((1st āˆ˜ š¹):š“āŸ¶šµ ā†” ((1st āˆ˜ š¹) Fn š“ āˆ§ ran (1st āˆ˜ š¹) āŠ† šµ))
208, 18, 19sylanbrc 417 1 (š¹:š“āŸ¶(šµ Ɨ š¶) ā†’ (1st āˆ˜ š¹):š“āŸ¶šµ)
Colors of variables: wff set class
Syntax hints:   ā†’ wi 4  Vcvv 2738   āŠ† wss 3130   Ɨ cxp 4625  ran crn 4628   ā†¾ cres 4629   āˆ˜ ccom 4631   Fn wfn 5212  āŸ¶wf 5213  ā€“ontoā†’wfo 5215  1st c1st 6139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fo 5223  df-fv 5225  df-1st 6141
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator