| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stcof | GIF version | ||
| Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
| Ref | Expression |
|---|---|
| 1stcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo1st 6303 | . . . 4 ⊢ 1st :V–onto→V | |
| 2 | fofn 5550 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 1st Fn V |
| 4 | ffn 5473 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
| 5 | dffn2 5475 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
| 7 | fnfco 5500 | . . 3 ⊢ ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st ∘ 𝐹) Fn 𝐴) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹) Fn 𝐴) |
| 9 | rnco 5235 | . . 3 ⊢ ran (1st ∘ 𝐹) = ran (1st ↾ ran 𝐹) | |
| 10 | frn 5482 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
| 11 | ssres2 5032 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶))) | |
| 12 | rnss 4954 | . . . . 5 ⊢ ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | |
| 13 | 10, 11, 12 | 3syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) |
| 14 | f1stres 6305 | . . . . 5 ⊢ (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 | |
| 15 | frn 5482 | . . . . 5 ⊢ ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵 |
| 17 | 13, 16 | sstrdi 3236 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵) |
| 18 | 9, 17 | eqsstrid 3270 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ∘ 𝐹) ⊆ 𝐵) |
| 19 | df-f 5322 | . 2 ⊢ ((1st ∘ 𝐹):𝐴⟶𝐵 ↔ ((1st ∘ 𝐹) Fn 𝐴 ∧ ran (1st ∘ 𝐹) ⊆ 𝐵)) | |
| 20 | 8, 18, 19 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Vcvv 2799 ⊆ wss 3197 × cxp 4717 ran crn 4720 ↾ cres 4721 ∘ ccom 4723 Fn wfn 5313 ⟶wf 5314 –onto→wfo 5316 1st c1st 6284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6286 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |