ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stcof GIF version

Theorem 1stcof 6216
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.)
Assertion
Ref Expression
1stcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)

Proof of Theorem 1stcof
StepHypRef Expression
1 fo1st 6210 . . . 4 1st :V–onto→V
2 fofn 5478 . . . 4 (1st :V–onto→V → 1st Fn V)
31, 2ax-mp 5 . . 3 1st Fn V
4 ffn 5403 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 5405 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 122 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 5428 . . 3 ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st𝐹) Fn 𝐴)
83, 6, 7sylancr 414 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹) Fn 𝐴)
9 rnco 5172 . . 3 ran (1st𝐹) = ran (1st ↾ ran 𝐹)
10 frn 5412 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 4969 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)))
12 rnss 4892 . . . . 5 ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 17 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶)))
14 f1stres 6212 . . . . 5 (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵
15 frn 5412 . . . . 5 ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵)
1614, 15ax-mp 5 . . . 4 ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵
1713, 16sstrdi 3191 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵)
189, 17eqsstrid 3225 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st𝐹) ⊆ 𝐵)
19 df-f 5258 . 2 ((1st𝐹):𝐴𝐵 ↔ ((1st𝐹) Fn 𝐴 ∧ ran (1st𝐹) ⊆ 𝐵))
208, 18, 19sylanbrc 417 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st𝐹):𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2760  wss 3153   × cxp 4657  ran crn 4660  cres 4661  ccom 4663   Fn wfn 5249  wf 5250  ontowfo 5252  1st c1st 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-1st 6193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator