| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndcof | GIF version | ||
| Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| 2ndcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fo2nd 6302 | . . . 4 ⊢ 2nd :V–onto→V | |
| 2 | fofn 5549 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
| 4 | ffn 5472 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
| 5 | dffn2 5474 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
| 7 | fnfco 5499 | . . 3 ⊢ ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd ∘ 𝐹) Fn 𝐴) | |
| 8 | 3, 6, 7 | sylancr 414 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹) Fn 𝐴) |
| 9 | rnco 5234 | . . 3 ⊢ ran (2nd ∘ 𝐹) = ran (2nd ↾ ran 𝐹) | |
| 10 | frn 5481 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
| 11 | ssres2 5031 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶))) | |
| 12 | rnss 4953 | . . . . 5 ⊢ ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) | |
| 13 | 10, 11, 12 | 3syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) |
| 14 | f2ndres 6304 | . . . . 5 ⊢ (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 | |
| 15 | frn 5481 | . . . . 5 ⊢ ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶 |
| 17 | 13, 16 | sstrdi 3236 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶) |
| 18 | 9, 17 | eqsstrid 3270 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ∘ 𝐹) ⊆ 𝐶) |
| 19 | df-f 5321 | . 2 ⊢ ((2nd ∘ 𝐹):𝐴⟶𝐶 ↔ ((2nd ∘ 𝐹) Fn 𝐴 ∧ ran (2nd ∘ 𝐹) ⊆ 𝐶)) | |
| 20 | 8, 18, 19 | sylanbrc 417 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Vcvv 2799 ⊆ wss 3197 × cxp 4716 ran crn 4719 ↾ cres 4720 ∘ ccom 4722 Fn wfn 5312 ⟶wf 5313 –onto→wfo 5315 2nd c2nd 6283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-2nd 6285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |