ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndcof GIF version

Theorem 2ndcof 6167
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof (š¹:š“āŸ¶(šµ Ɨ š¶) → (2nd ∘ š¹):š“āŸ¶š¶)

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 6161 . . . 4 2nd :V–onto→V
2 fofn 5442 . . . 4 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . 3 2nd Fn V
4 ffn 5367 . . . 4 (š¹:š“āŸ¶(šµ Ɨ š¶) → š¹ Fn š“)
5 dffn2 5369 . . . 4 (š¹ Fn š“ ↔ š¹:š“āŸ¶V)
64, 5sylib 122 . . 3 (š¹:š“āŸ¶(šµ Ɨ š¶) → š¹:š“āŸ¶V)
7 fnfco 5392 . . 3 ((2nd Fn V ∧ š¹:š“āŸ¶V) → (2nd ∘ š¹) Fn š“)
83, 6, 7sylancr 414 . 2 (š¹:š“āŸ¶(šµ Ɨ š¶) → (2nd ∘ š¹) Fn š“)
9 rnco 5137 . . 3 ran (2nd ∘ š¹) = ran (2nd ↾ ran š¹)
10 frn 5376 . . . . 5 (š¹:š“āŸ¶(šµ Ɨ š¶) → ran š¹ āŠ† (šµ Ɨ š¶))
11 ssres2 4936 . . . . 5 (ran š¹ āŠ† (šµ Ɨ š¶) → (2nd ↾ ran š¹) āŠ† (2nd ↾ (šµ Ɨ š¶)))
12 rnss 4859 . . . . 5 ((2nd ↾ ran š¹) āŠ† (2nd ↾ (šµ Ɨ š¶)) → ran (2nd ↾ ran š¹) āŠ† ran (2nd ↾ (šµ Ɨ š¶)))
1310, 11, 123syl 17 . . . 4 (š¹:š“āŸ¶(šµ Ɨ š¶) → ran (2nd ↾ ran š¹) āŠ† ran (2nd ↾ (šµ Ɨ š¶)))
14 f2ndres 6163 . . . . 5 (2nd ↾ (šµ Ɨ š¶)):(šµ Ɨ š¶)āŸ¶š¶
15 frn 5376 . . . . 5 ((2nd ↾ (šµ Ɨ š¶)):(šµ Ɨ š¶)āŸ¶š¶ → ran (2nd ↾ (šµ Ɨ š¶)) āŠ† š¶)
1614, 15ax-mp 5 . . . 4 ran (2nd ↾ (šµ Ɨ š¶)) āŠ† š¶
1713, 16sstrdi 3169 . . 3 (š¹:š“āŸ¶(šµ Ɨ š¶) → ran (2nd ↾ ran š¹) āŠ† š¶)
189, 17eqsstrid 3203 . 2 (š¹:š“āŸ¶(šµ Ɨ š¶) → ran (2nd ∘ š¹) āŠ† š¶)
19 df-f 5222 . 2 ((2nd ∘ š¹):š“āŸ¶š¶ ↔ ((2nd ∘ š¹) Fn š“ ∧ ran (2nd ∘ š¹) āŠ† š¶))
208, 18, 19sylanbrc 417 1 (š¹:š“āŸ¶(šµ Ɨ š¶) → (2nd ∘ š¹):š“āŸ¶š¶)
Colors of variables: wff set class
Syntax hints:   → wi 4  Vcvv 2739   āŠ† wss 3131   Ɨ cxp 4626  ran crn 4629   ↾ cres 4630   ∘ ccom 4632   Fn wfn 5213  āŸ¶wf 5214  ā€“onto→wfo 5216  2nd c2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-2nd 6144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator