Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndcof | GIF version |
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
2ndcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 6135 | . . . 4 ⊢ 2nd :V–onto→V | |
2 | fofn 5420 | . . . 4 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ 2nd Fn V |
4 | ffn 5345 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
5 | dffn2 5347 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
6 | 4, 5 | sylib 121 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
7 | fnfco 5370 | . . 3 ⊢ ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd ∘ 𝐹) Fn 𝐴) | |
8 | 3, 6, 7 | sylancr 412 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹) Fn 𝐴) |
9 | rnco 5115 | . . 3 ⊢ ran (2nd ∘ 𝐹) = ran (2nd ↾ ran 𝐹) | |
10 | frn 5354 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
11 | ssres2 4916 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶))) | |
12 | rnss 4839 | . . . . 5 ⊢ ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) | |
13 | 10, 11, 12 | 3syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶))) |
14 | f2ndres 6137 | . . . . 5 ⊢ (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 | |
15 | frn 5354 | . . . . 5 ⊢ ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶) | |
16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶 |
17 | 13, 16 | sstrdi 3159 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶) |
18 | 9, 17 | eqsstrid 3193 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ∘ 𝐹) ⊆ 𝐶) |
19 | df-f 5200 | . 2 ⊢ ((2nd ∘ 𝐹):𝐴⟶𝐶 ↔ ((2nd ∘ 𝐹) Fn 𝐴 ∧ ran (2nd ∘ 𝐹) ⊆ 𝐶)) | |
20 | 8, 18, 19 | sylanbrc 415 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd ∘ 𝐹):𝐴⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Vcvv 2730 ⊆ wss 3121 × cxp 4607 ran crn 4610 ↾ cres 4611 ∘ ccom 4613 Fn wfn 5191 ⟶wf 5192 –onto→wfo 5194 2nd c2nd 6116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fo 5202 df-fv 5204 df-2nd 6118 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |