ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndcof GIF version

Theorem 2ndcof 6141
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 6135 . . . 4 2nd :V–onto→V
2 fofn 5420 . . . 4 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 5 . . 3 2nd Fn V
4 ffn 5345 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴)
5 dffn2 5347 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶V)
64, 5sylib 121 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V)
7 fnfco 5370 . . 3 ((2nd Fn V ∧ 𝐹:𝐴⟶V) → (2nd𝐹) Fn 𝐴)
83, 6, 7sylancr 412 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹) Fn 𝐴)
9 rnco 5115 . . 3 ran (2nd𝐹) = ran (2nd ↾ ran 𝐹)
10 frn 5354 . . . . 5 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶))
11 ssres2 4916 . . . . 5 (ran 𝐹 ⊆ (𝐵 × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)))
12 rnss 4839 . . . . 5 ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (𝐵 × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
1310, 11, 123syl 17 . . . 4 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (𝐵 × 𝐶)))
14 f2ndres 6137 . . . . 5 (2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶
15 frn 5354 . . . . 5 ((2nd ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐶 → ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶)
1614, 15ax-mp 5 . . . 4 ran (2nd ↾ (𝐵 × 𝐶)) ⊆ 𝐶
1713, 16sstrdi 3159 . . 3 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶)
189, 17eqsstrid 3193 . 2 (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (2nd𝐹) ⊆ 𝐶)
19 df-f 5200 . 2 ((2nd𝐹):𝐴𝐶 ↔ ((2nd𝐹) Fn 𝐴 ∧ ran (2nd𝐹) ⊆ 𝐶))
208, 18, 19sylanbrc 415 1 (𝐹:𝐴⟶(𝐵 × 𝐶) → (2nd𝐹):𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2730  wss 3121   × cxp 4607  ran crn 4610  cres 4611  ccom 4613   Fn wfn 5191  wf 5192  ontowfo 5194  2nd c2nd 6116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204  df-2nd 6118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator