ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supmaxti GIF version

Theorem supmaxti 6940
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmaxti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supmaxti.2 (𝜑𝐶𝐴)
supmaxti.3 (𝜑𝐶𝐵)
supmaxti.4 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
Assertion
Ref Expression
supmaxti (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦   𝑢,𝐵,𝑣,𝑦   𝑢,𝐶,𝑣,𝑦   𝑢,𝑅,𝑣,𝑦   𝜑,𝑢,𝑣,𝑦

Proof of Theorem supmaxti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 supmaxti.ti . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supmaxti.2 . 2 (𝜑𝐶𝐴)
3 supmaxti.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
4 supmaxti.3 . . 3 (𝜑𝐶𝐵)
5 simprr 522 . . 3 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → 𝑦𝑅𝐶)
6 breq2 3969 . . . 4 (𝑥 = 𝐶 → (𝑦𝑅𝑥𝑦𝑅𝐶))
76rspcev 2816 . . 3 ((𝐶𝐵𝑦𝑅𝐶) → ∃𝑥𝐵 𝑦𝑅𝑥)
84, 5, 7syl2an2r 585 . 2 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑥𝐵 𝑦𝑅𝑥)
91, 2, 3, 8eqsuptid 6933 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  supcsup 6918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5132  df-riota 5774  df-sup 6920
This theorem is referenced by:  supsnti  6941  sup3exmid  8811  maxleim  11087  xrmaxleim  11123  supfz  13601
  Copyright terms: Public domain W3C validator