ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supmaxti GIF version

Theorem supmaxti 7079
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmaxti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supmaxti.2 (𝜑𝐶𝐴)
supmaxti.3 (𝜑𝐶𝐵)
supmaxti.4 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
Assertion
Ref Expression
supmaxti (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦   𝑢,𝐵,𝑣,𝑦   𝑢,𝐶,𝑣,𝑦   𝑢,𝑅,𝑣,𝑦   𝜑,𝑢,𝑣,𝑦

Proof of Theorem supmaxti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 supmaxti.ti . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supmaxti.2 . 2 (𝜑𝐶𝐴)
3 supmaxti.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
4 supmaxti.3 . . 3 (𝜑𝐶𝐵)
5 simprr 531 . . 3 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → 𝑦𝑅𝐶)
6 breq2 4038 . . . 4 (𝑥 = 𝐶 → (𝑦𝑅𝑥𝑦𝑅𝐶))
76rspcev 2868 . . 3 ((𝐶𝐵𝑦𝑅𝐶) → ∃𝑥𝐵 𝑦𝑅𝑥)
84, 5, 7syl2an2r 595 . 2 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑥𝐵 𝑦𝑅𝑥)
91, 2, 3, 8eqsuptid 7072 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476   class class class wbr 4034  supcsup 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-riota 5880  df-sup 7059
This theorem is referenced by:  supsnti  7080  sup3exmid  9001  maxleim  11387  xrmaxleim  11426  supfz  15802
  Copyright terms: Public domain W3C validator