![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > supmaxti | GIF version |
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.) |
Ref | Expression |
---|---|
supmaxti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
supmaxti.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
supmaxti.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supmaxti.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
Ref | Expression |
---|---|
supmaxti | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmaxti.ti | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | supmaxti.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | supmaxti.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
4 | supmaxti.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
5 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → 𝑦𝑅𝐶) | |
6 | breq2 4008 | . . . 4 ⊢ (𝑥 = 𝐶 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐶)) | |
7 | 6 | rspcev 2842 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝑦𝑅𝐶) → ∃𝑥 ∈ 𝐵 𝑦𝑅𝑥) |
8 | 4, 5, 7 | syl2an2r 595 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑥 ∈ 𝐵 𝑦𝑅𝑥) |
9 | 1, 2, 3, 8 | eqsuptid 6996 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4004 supcsup 6981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-br 4005 df-iota 5179 df-riota 5831 df-sup 6983 |
This theorem is referenced by: supsnti 7004 sup3exmid 8914 maxleim 11214 xrmaxleim 11252 supfz 14821 |
Copyright terms: Public domain | W3C validator |