ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supmaxti GIF version

Theorem supmaxti 7159
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmaxti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supmaxti.2 (𝜑𝐶𝐴)
supmaxti.3 (𝜑𝐶𝐵)
supmaxti.4 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
Assertion
Ref Expression
supmaxti (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦   𝑢,𝐵,𝑣,𝑦   𝑢,𝐶,𝑣,𝑦   𝑢,𝑅,𝑣,𝑦   𝜑,𝑢,𝑣,𝑦

Proof of Theorem supmaxti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 supmaxti.ti . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supmaxti.2 . 2 (𝜑𝐶𝐴)
3 supmaxti.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
4 supmaxti.3 . . 3 (𝜑𝐶𝐵)
5 simprr 531 . . 3 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → 𝑦𝑅𝐶)
6 breq2 4086 . . . 4 (𝑥 = 𝐶 → (𝑦𝑅𝑥𝑦𝑅𝐶))
76rspcev 2907 . . 3 ((𝐶𝐵𝑦𝑅𝐶) → ∃𝑥𝐵 𝑦𝑅𝑥)
84, 5, 7syl2an2r 597 . 2 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑥𝐵 𝑦𝑅𝑥)
91, 2, 3, 8eqsuptid 7152 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  supcsup 7137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-riota 5947  df-sup 7139
This theorem is referenced by:  supsnti  7160  sup3exmid  9092  maxleim  11702  xrmaxleim  11741  supfz  16370
  Copyright terms: Public domain W3C validator