ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcddiv GIF version

Theorem gcddiv 12156
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))

Proof of Theorem gcddiv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9336 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
213ad2ant3 1022 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3 simp1 999 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
4 divides 11932 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
52, 3, 4syl2anc 411 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
6 simp2 1000 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
7 divides 11932 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
82, 6, 7syl2anc 411 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
95, 8anbi12d 473 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵)))
10 reeanv 2664 . . . 4 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
119, 10bitr4di 198 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵)))
12 gcdcl 12103 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℕ0)
1312nn0cnd 9295 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℂ)
14133adant3 1019 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝑎 gcd 𝑏) ∈ ℂ)
15 nncn 8990 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
16153ad2ant3 1022 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℂ)
17 simp3 1001 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℕ)
1817nnap0d 9028 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 # 0)
1914, 16, 18divcanap4d 8815 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 gcd 𝑏) · 𝐶) / 𝐶) = (𝑎 gcd 𝑏))
20 nnnn0 9247 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℕ0)
21 mulgcdr 12155 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2220, 21syl3an3 1284 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2322oveq1d 5933 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 gcd 𝑏) · 𝐶) / 𝐶))
24 zcn 9322 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
25243ad2ant1 1020 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑎 ∈ ℂ)
2625, 16, 18divcanap4d 8815 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) / 𝐶) = 𝑎)
27 zcn 9322 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
28273ad2ant2 1021 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑏 ∈ ℂ)
2928, 16, 18divcanap4d 8815 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑏 · 𝐶) / 𝐶) = 𝑏)
3026, 29oveq12d 5936 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = (𝑎 gcd 𝑏))
3119, 23, 303eqtr4d 2236 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)))
32 oveq12 5927 . . . . . . . . . 10 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = (𝐴 gcd 𝐵))
3332oveq1d 5933 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = ((𝐴 gcd 𝐵) / 𝐶))
34 oveq1 5925 . . . . . . . . . 10 ((𝑎 · 𝐶) = 𝐴 → ((𝑎 · 𝐶) / 𝐶) = (𝐴 / 𝐶))
35 oveq1 5925 . . . . . . . . . 10 ((𝑏 · 𝐶) = 𝐵 → ((𝑏 · 𝐶) / 𝐶) = (𝐵 / 𝐶))
3634, 35oveqan12d 5937 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
3733, 36eqeq12d 2208 . . . . . . . 8 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) ↔ ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
3831, 37syl5ibcom 155 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
39383expa 1205 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4039expcom 116 . . . . 5 (𝐶 ∈ ℕ → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))))
4140rexlimdvv 2618 . . . 4 (𝐶 ∈ ℕ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
42413ad2ant3 1022 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4311, 42sylbid 150 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4443imp 124 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4029  (class class class)co 5918  cc 7870   · cmul 7877   / cdiv 8691  cn 8982  0cn0 9240  cz 9317  cdvds 11930   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  sqgcd  12166  divgcdodd  12281  divnumden  12334  hashgcdlem  12376  pythagtriplem19  12420
  Copyright terms: Public domain W3C validator