ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcddiv GIF version

Theorem gcddiv 11743
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))

Proof of Theorem gcddiv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9097 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
213ad2ant3 1005 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3 simp1 982 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
4 divides 11531 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
52, 3, 4syl2anc 409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
6 simp2 983 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
7 divides 11531 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
82, 6, 7syl2anc 409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
95, 8anbi12d 465 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵)))
10 reeanv 2603 . . . 4 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
119, 10syl6bbr 197 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵)))
12 gcdcl 11691 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℕ0)
1312nn0cnd 9056 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℂ)
14133adant3 1002 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝑎 gcd 𝑏) ∈ ℂ)
15 nncn 8752 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
16153ad2ant3 1005 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℂ)
17 simp3 984 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℕ)
1817nnap0d 8790 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 # 0)
1914, 16, 18divcanap4d 8580 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 gcd 𝑏) · 𝐶) / 𝐶) = (𝑎 gcd 𝑏))
20 nnnn0 9008 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℕ0)
21 mulgcdr 11742 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2220, 21syl3an3 1252 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2322oveq1d 5797 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 gcd 𝑏) · 𝐶) / 𝐶))
24 zcn 9083 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
25243ad2ant1 1003 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑎 ∈ ℂ)
2625, 16, 18divcanap4d 8580 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) / 𝐶) = 𝑎)
27 zcn 9083 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
28273ad2ant2 1004 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑏 ∈ ℂ)
2928, 16, 18divcanap4d 8580 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑏 · 𝐶) / 𝐶) = 𝑏)
3026, 29oveq12d 5800 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = (𝑎 gcd 𝑏))
3119, 23, 303eqtr4d 2183 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)))
32 oveq12 5791 . . . . . . . . . 10 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = (𝐴 gcd 𝐵))
3332oveq1d 5797 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = ((𝐴 gcd 𝐵) / 𝐶))
34 oveq1 5789 . . . . . . . . . 10 ((𝑎 · 𝐶) = 𝐴 → ((𝑎 · 𝐶) / 𝐶) = (𝐴 / 𝐶))
35 oveq1 5789 . . . . . . . . . 10 ((𝑏 · 𝐶) = 𝐵 → ((𝑏 · 𝐶) / 𝐶) = (𝐵 / 𝐶))
3634, 35oveqan12d 5801 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
3733, 36eqeq12d 2155 . . . . . . . 8 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) ↔ ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
3831, 37syl5ibcom 154 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
39383expa 1182 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4039expcom 115 . . . . 5 (𝐶 ∈ ℕ → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))))
4140rexlimdvv 2559 . . . 4 (𝐶 ∈ ℕ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
42413ad2ant3 1005 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4311, 42sylbid 149 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4443imp 123 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wrex 2418   class class class wbr 3937  (class class class)co 5782  cc 7642   · cmul 7649   / cdiv 8456  cn 8744  0cn0 9001  cz 9078  cdvds 11529   gcd cgcd 11671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672
This theorem is referenced by:  sqgcd  11753  divgcdodd  11857  divnumden  11910  hashgcdlem  11939
  Copyright terms: Public domain W3C validator