ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcddiv GIF version

Theorem gcddiv 11974
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))

Proof of Theorem gcddiv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9231 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
213ad2ant3 1015 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3 simp1 992 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
4 divides 11751 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
52, 3, 4syl2anc 409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴))
6 simp2 993 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
7 divides 11751 . . . . . 6 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
82, 6, 7syl2anc 409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
95, 8anbi12d 470 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵)))
10 reeanv 2639 . . . 4 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · 𝐶) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · 𝐶) = 𝐵))
119, 10bitr4di 197 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵)))
12 gcdcl 11921 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℕ0)
1312nn0cnd 9190 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 gcd 𝑏) ∈ ℂ)
14133adant3 1012 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝑎 gcd 𝑏) ∈ ℂ)
15 nncn 8886 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
16153ad2ant3 1015 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℂ)
17 simp3 994 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℕ)
1817nnap0d 8924 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 # 0)
1914, 16, 18divcanap4d 8713 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 gcd 𝑏) · 𝐶) / 𝐶) = (𝑎 gcd 𝑏))
20 nnnn0 9142 . . . . . . . . . . 11 (𝐶 ∈ ℕ → 𝐶 ∈ ℕ0)
21 mulgcdr 11973 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2220, 21syl3an3 1268 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = ((𝑎 gcd 𝑏) · 𝐶))
2322oveq1d 5868 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 gcd 𝑏) · 𝐶) / 𝐶))
24 zcn 9217 . . . . . . . . . . . 12 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
25243ad2ant1 1013 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑎 ∈ ℂ)
2625, 16, 18divcanap4d 8713 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑎 · 𝐶) / 𝐶) = 𝑎)
27 zcn 9217 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
28273ad2ant2 1014 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝑏 ∈ ℂ)
2928, 16, 18divcanap4d 8713 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝑏 · 𝐶) / 𝐶) = 𝑏)
3026, 29oveq12d 5871 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = (𝑎 gcd 𝑏))
3119, 23, 303eqtr4d 2213 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)))
32 oveq12 5862 . . . . . . . . . 10 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) = (𝐴 gcd 𝐵))
3332oveq1d 5868 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = ((𝐴 gcd 𝐵) / 𝐶))
34 oveq1 5860 . . . . . . . . . 10 ((𝑎 · 𝐶) = 𝐴 → ((𝑎 · 𝐶) / 𝐶) = (𝐴 / 𝐶))
35 oveq1 5860 . . . . . . . . . 10 ((𝑏 · 𝐶) = 𝐵 → ((𝑏 · 𝐶) / 𝐶) = (𝐵 / 𝐶))
3634, 35oveqan12d 5872 . . . . . . . . 9 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
3733, 36eqeq12d 2185 . . . . . . . 8 (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((((𝑎 · 𝐶) gcd (𝑏 · 𝐶)) / 𝐶) = (((𝑎 · 𝐶) / 𝐶) gcd ((𝑏 · 𝐶) / 𝐶)) ↔ ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
3831, 37syl5ibcom 154 . . . . . . 7 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
39383expa 1198 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ 𝐶 ∈ ℕ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4039expcom 115 . . . . 5 (𝐶 ∈ ℕ → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))))
4140rexlimdvv 2594 . . . 4 (𝐶 ∈ ℕ → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
42413ad2ant3 1015 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑎 · 𝐶) = 𝐴 ∧ (𝑏 · 𝐶) = 𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4311, 42sylbid 149 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → ((𝐶𝐴𝐶𝐵) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))))
4443imp 123 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶𝐴𝐶𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wrex 2449   class class class wbr 3989  (class class class)co 5853  cc 7772   · cmul 7779   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  cdvds 11749   gcd cgcd 11897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898
This theorem is referenced by:  sqgcd  11984  divgcdodd  12097  divnumden  12150  hashgcdlem  12192  pythagtriplem19  12236
  Copyright terms: Public domain W3C validator