![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hmeof1o2 | GIF version |
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeof1o2 | β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβ1-1-ontoβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hmeocn 13945 | . . . 4 β’ (πΉ β (π½HomeoπΎ) β πΉ β (π½ Cn πΎ)) | |
2 | cnf2 13845 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½ Cn πΎ)) β πΉ:πβΆπ) | |
3 | 1, 2 | syl3an3 1273 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβΆπ) |
4 | 3 | ffnd 5368 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ Fn π) |
5 | hmeocnvcn 13946 | . . . 4 β’ (πΉ β (π½HomeoπΎ) β β‘πΉ β (πΎ Cn π½)) | |
6 | cnf2 13845 | . . . . 5 β’ ((πΎ β (TopOnβπ) β§ π½ β (TopOnβπ) β§ β‘πΉ β (πΎ Cn π½)) β β‘πΉ:πβΆπ) | |
7 | 6 | 3com12 1207 | . . . 4 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ β‘πΉ β (πΎ Cn π½)) β β‘πΉ:πβΆπ) |
8 | 5, 7 | syl3an3 1273 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β β‘πΉ:πβΆπ) |
9 | 8 | ffnd 5368 | . 2 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β β‘πΉ Fn π) |
10 | dff1o4 5471 | . 2 β’ (πΉ:πβ1-1-ontoβπ β (πΉ Fn π β§ β‘πΉ Fn π)) | |
11 | 4, 9, 10 | sylanbrc 417 | 1 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½HomeoπΎ)) β πΉ:πβ1-1-ontoβπ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ w3a 978 β wcel 2148 β‘ccnv 4627 Fn wfn 5213 βΆwf 5214 β1-1-ontoβwf1o 5217 βcfv 5218 (class class class)co 5878 TopOnctopon 13650 Cn ccn 13825 Homeochmeo 13940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-map 6653 df-top 13638 df-topon 13651 df-cn 13828 df-hmeo 13941 |
This theorem is referenced by: hmeof1o 13949 |
Copyright terms: Public domain | W3C validator |