Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > apsub1 | GIF version |
Description: Subtraction respects apartness. Analogue of subcan2 8133 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.) |
Ref | Expression |
---|---|
apsub1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8108 | . . 3 ⊢ (𝐶 ∈ ℂ → -𝐶 ∈ ℂ) | |
2 | apadd1 8516 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + -𝐶) # (𝐵 + -𝐶))) | |
3 | 1, 2 | syl3an3 1268 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + -𝐶) # (𝐵 + -𝐶))) |
4 | simp1 992 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
5 | simp3 994 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
6 | 4, 5 | negsubd 8225 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + -𝐶) = (𝐴 − 𝐶)) |
7 | simp2 993 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
8 | 7, 5 | negsubd 8225 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
9 | 6, 8 | breq12d 4000 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + -𝐶) # (𝐵 + -𝐶) ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) |
10 | 3, 9 | bitrd 187 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5851 ℂcc 7761 + caddc 7766 − cmin 8079 -cneg 8080 # cap 8489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-pnf 7945 df-mnf 7946 df-ltxr 7948 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 |
This theorem is referenced by: eirraplem 11728 |
Copyright terms: Public domain | W3C validator |