ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgaddcom GIF version

Theorem mulgaddcom 12960
Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcom ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))

Proof of Theorem mulgaddcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 5889 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
31oveq2d 5890 . . . . . 6 (𝑥 = 0 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (0 · 𝑋)))
42, 3eqeq12d 2192 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋))))
5 oveq1 5881 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 5889 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((𝑦 · 𝑋) + 𝑋))
75oveq2d 5890 . . . . . 6 (𝑥 = 𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑦 · 𝑋)))
86, 7eqeq12d 2192 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
9 oveq1 5881 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 5889 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) + 𝑋) = (((𝑦 + 1) · 𝑋) + 𝑋))
119oveq2d 5890 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + ((𝑦 + 1) · 𝑋)))
1210, 11eqeq12d 2192 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
13 oveq1 5881 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 5889 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
1513oveq2d 5890 . . . . . 6 (𝑥 = -𝑦 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (-𝑦 · 𝑋)))
1614, 15eqeq12d 2192 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))
17 oveq1 5881 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 5889 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) + 𝑋) = ((𝑁 · 𝑋) + 𝑋))
1917oveq2d 5890 . . . . . 6 (𝑥 = 𝑁 → (𝑋 + (𝑥 · 𝑋)) = (𝑋 + (𝑁 · 𝑋)))
2018, 19eqeq12d 2192 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) + 𝑋) = (𝑋 + (𝑥 · 𝑋)) ↔ ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
21 mulgaddcom.b . . . . . . 7 𝐵 = (Base‘𝐺)
22 mulgaddcom.p . . . . . . 7 + = (+g𝐺)
23 eqid 2177 . . . . . . 7 (0g𝐺) = (0g𝐺)
2421, 22, 23grplid 12860 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
25 mulgaddcom.t . . . . . . . . 9 · = (.g𝐺)
2621, 23, 25mulg0 12942 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 277 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
2827oveq1d 5889 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
2927oveq2d 5890 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = (𝑋 + (0g𝐺)))
3021, 22, 23grprid 12861 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
3129, 30eqtrd 2210 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0 · 𝑋)) = 𝑋)
3224, 28, 313eqtr4d 2220 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = (𝑋 + (0 · 𝑋)))
33 nn0z 9271 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
34 simp1 997 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝐺 ∈ Grp)
35 simp2 998 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → 𝑋𝐵)
3621, 25mulgcl 12954 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
37363com23 1209 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → (𝑦 · 𝑋) ∈ 𝐵)
3821, 22grpass 12840 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵)) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
3934, 35, 37, 35, 38syl13anc 1240 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℤ) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4033, 39syl3an3 1273 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
4140adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (𝑦 · 𝑋)) + 𝑋) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
42 grpmnd 12838 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
43423ad2ant1 1018 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
44 simp3 999 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
45 simp2 998 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → 𝑋𝐵)
4621, 25, 22mulgnn0p1 12948 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4743, 44, 45, 46syl3anc 1238 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋) + 𝑋))
4847eqeq1d 2186 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)) ↔ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))))
4948biimpar 297 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑦 + 1) · 𝑋) = (𝑋 + (𝑦 · 𝑋)))
5049oveq1d 5889 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = ((𝑋 + (𝑦 · 𝑋)) + 𝑋))
5147oveq2d 5890 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5251adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((𝑦 + 1) · 𝑋)) = (𝑋 + ((𝑦 · 𝑋) + 𝑋)))
5341, 50, 523eqtr4d 2220 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))
5453ex 115 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋))))
55543expia 1205 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → (((𝑦 + 1) · 𝑋) + 𝑋) = (𝑋 + ((𝑦 + 1) · 𝑋)))))
56 nnz 9270 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
5721, 25, 22mulgaddcomlem 12959 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
58573exp1 1223 . . . . . . . 8 (𝐺 ∈ Grp → (𝑦 ∈ ℤ → (𝑋𝐵 → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
5958com23 78 . . . . . . 7 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))))))
6059imp 124 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℤ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
6156, 60syl5 32 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))))
624, 8, 12, 16, 20, 32, 55, 61zindd 9369 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))))
6362ex 115 . . 3 (𝐺 ∈ Grp → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
6463com23 78 . 2 (𝐺 ∈ Grp → (𝑁 ∈ ℤ → (𝑋𝐵 → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))))
65643imp 1193 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cfv 5216  (class class class)co 5874  0cc0 7810  1c1 7811   + caddc 7813  -cneg 8127  cn 8917  0cn0 9174  cz 9251  Basecbs 12456  +gcplusg 12530  0gc0g 12695  Mndcmnd 12771  Grpcgrp 12831  .gcmg 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-uz 9527  df-seqfrec 10443  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-minusg 12835  df-mulg 12938
This theorem is referenced by:  mulginvcom  12961
  Copyright terms: Public domain W3C validator