Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcxpsub | GIF version |
Description: Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
rpcxpsub | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 8131 | . . 3 ⊢ (𝐶 ∈ ℂ → -𝐶 ∈ ℂ) | |
2 | rpcxpadd 13906 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + -𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐-𝐶))) | |
3 | 1, 2 | syl3an3 1273 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + -𝐶)) = ((𝐴↑𝑐𝐵) · (𝐴↑𝑐-𝐶))) |
4 | simp2 998 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
5 | simp3 999 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
6 | 4, 5 | negsubd 8248 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵 − 𝐶)) |
7 | 6 | oveq2d 5881 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 + -𝐶)) = (𝐴↑𝑐(𝐵 − 𝐶))) |
8 | rpcxpneg 13908 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐-𝐶) = (1 / (𝐴↑𝑐𝐶))) | |
9 | 8 | 3adant2 1016 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐-𝐶) = (1 / (𝐴↑𝑐𝐶))) |
10 | 9 | oveq2d 5881 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵) · (𝐴↑𝑐-𝐶)) = ((𝐴↑𝑐𝐵) · (1 / (𝐴↑𝑐𝐶)))) |
11 | rpcncxpcl 13903 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) | |
12 | 11 | 3adant3 1017 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐵) ∈ ℂ) |
13 | rpcncxpcl 13903 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) ∈ ℂ) | |
14 | 13 | 3adant2 1016 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) ∈ ℂ) |
15 | cxpap0 13905 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) # 0) | |
16 | 15 | 3adant2 1016 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐𝐶) # 0) |
17 | 12, 14, 16 | divrecapd 8723 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶)) = ((𝐴↑𝑐𝐵) · (1 / (𝐴↑𝑐𝐶)))) |
18 | 10, 17 | eqtr4d 2211 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴↑𝑐𝐵) · (𝐴↑𝑐-𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) |
19 | 3, 7, 18 | 3eqtr3d 2216 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴↑𝑐(𝐵 − 𝐶)) = ((𝐴↑𝑐𝐵) / (𝐴↑𝑐𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 − cmin 8102 -cneg 8103 # cap 8512 / cdiv 8602 ℝ+crp 9624 ↑𝑐ccxp 13858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 ax-pre-suploc 7907 ax-addf 7908 ax-mulf 7909 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-disj 3976 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-of 6073 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-oadd 6411 df-er 6525 df-map 6640 df-pm 6641 df-en 6731 df-dom 6732 df-fin 6733 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-xneg 9743 df-xadd 9744 df-ioo 9863 df-ico 9865 df-icc 9866 df-fz 9980 df-fzo 10113 df-seqfrec 10416 df-exp 10490 df-fac 10674 df-bc 10696 df-ihash 10724 df-shft 10792 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-clim 11255 df-sumdc 11330 df-ef 11624 df-e 11625 df-rest 12621 df-topgen 12640 df-psmet 13067 df-xmet 13068 df-met 13069 df-bl 13070 df-mopn 13071 df-top 13076 df-topon 13089 df-bases 13121 df-ntr 13176 df-cn 13268 df-cnp 13269 df-tx 13333 df-cncf 13638 df-limced 13705 df-dvap 13706 df-relog 13859 df-rpcxp 13860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |