| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xleadd1 | GIF version | ||
| Description: Weakened version of xleadd1a 10069 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xleadd1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8192 | . . 3 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
| 2 | xleadd1a 10069 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 𝐴 ≤ 𝐵) → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) | |
| 3 | 2 | ex 115 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ≤ 𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
| 4 | 1, 3 | syl3an3 1306 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 → (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
| 5 | simp1 1021 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*) | |
| 6 | 1 | 3ad2ant3 1044 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*) |
| 7 | xaddcl 10056 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*) | |
| 8 | 5, 6, 7 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ*) |
| 9 | simp2 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*) | |
| 10 | xaddcl 10056 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*) | |
| 11 | 9, 6, 10 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ*) |
| 12 | xnegcl 10028 | . . . . 5 ⊢ (𝐶 ∈ ℝ* → -𝑒𝐶 ∈ ℝ*) | |
| 13 | 6, 12 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → -𝑒𝐶 ∈ ℝ*) |
| 14 | xleadd1a 10069 | . . . . 5 ⊢ ((((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) ∧ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶)) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶)) | |
| 15 | 14 | ex 115 | . . . 4 ⊢ (((𝐴 +𝑒 𝐶) ∈ ℝ* ∧ (𝐵 +𝑒 𝐶) ∈ ℝ* ∧ -𝑒𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))) |
| 16 | 8, 11, 13, 15 | syl3anc 1271 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶))) |
| 17 | xpncan 10067 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴) | |
| 18 | 17 | 3adant2 1040 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐴) |
| 19 | xpncan 10067 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵) | |
| 20 | 19 | 3adant1 1039 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) = 𝐵) |
| 21 | 18, 20 | breq12d 4096 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (((𝐴 +𝑒 𝐶) +𝑒 -𝑒𝐶) ≤ ((𝐵 +𝑒 𝐶) +𝑒 -𝑒𝐶) ↔ 𝐴 ≤ 𝐵)) |
| 22 | 16, 21 | sylibd 149 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶) → 𝐴 ≤ 𝐵)) |
| 23 | 4, 22 | impbid 129 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ (𝐴 +𝑒 𝐶) ≤ (𝐵 +𝑒 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6001 ℝcr 7998 ℝ*cxr 8180 ≤ cle 8182 -𝑒cxne 9965 +𝑒 cxad 9966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-xneg 9968 df-xadd 9969 |
| This theorem is referenced by: xsubge0 10077 xlesubadd 10079 |
| Copyright terms: Public domain | W3C validator |