Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcn2 GIF version

Theorem subcn2 11087
 Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem subcn2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negcl 7969 . . 3 (𝐶 ∈ ℂ → -𝐶 ∈ ℂ)
2 addcn2 11086 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
31, 2syl3an3 1251 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
4 negcl 7969 . . . . . . . . 9 (𝑣 ∈ ℂ → -𝑣 ∈ ℂ)
5 oveq1 5781 . . . . . . . . . . . . . 14 (𝑤 = -𝑣 → (𝑤 − -𝐶) = (-𝑣 − -𝐶))
65fveq2d 5425 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (abs‘(𝑤 − -𝐶)) = (abs‘(-𝑣 − -𝐶)))
76breq1d 3939 . . . . . . . . . . . 12 (𝑤 = -𝑣 → ((abs‘(𝑤 − -𝐶)) < 𝑧 ↔ (abs‘(-𝑣 − -𝐶)) < 𝑧))
87anbi2d 459 . . . . . . . . . . 11 (𝑤 = -𝑣 → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧)))
9 oveq2 5782 . . . . . . . . . . . . . 14 (𝑤 = -𝑣 → (𝑢 + 𝑤) = (𝑢 + -𝑣))
109oveq1d 5789 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → ((𝑢 + 𝑤) − (𝐵 + -𝐶)) = ((𝑢 + -𝑣) − (𝐵 + -𝐶)))
1110fveq2d 5425 . . . . . . . . . . . 12 (𝑤 = -𝑣 → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) = (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))))
1211breq1d 3939 . . . . . . . . . . 11 (𝑤 = -𝑣 → ((abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴))
138, 12imbi12d 233 . . . . . . . . . 10 (𝑤 = -𝑣 → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1413rspcv 2785 . . . . . . . . 9 (-𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
154, 14syl 14 . . . . . . . 8 (𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1615adantl 275 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
17 simpr 109 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝑣 ∈ ℂ)
18 simpll3 1022 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐶 ∈ ℂ)
1917, 18neg2subd 8097 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (-𝑣 − -𝐶) = (𝐶𝑣))
2019fveq2d 5425 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝐶𝑣)))
2118, 17abssubd 10972 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(𝐶𝑣)) = (abs‘(𝑣𝐶)))
2220, 21eqtrd 2172 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝑣𝐶)))
2322breq1d 3939 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘(-𝑣 − -𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < 𝑧))
2423anbi2d 459 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧)))
25 negsub 8017 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
2625adantll 467 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
27 simpll2 1021 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐵 ∈ ℂ)
2827, 18negsubd 8086 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵𝐶))
2926, 28oveq12d 5792 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((𝑢 + -𝑣) − (𝐵 + -𝐶)) = ((𝑢𝑣) − (𝐵𝐶)))
3029fveq2d 5425 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) = (abs‘((𝑢𝑣) − (𝐵𝐶))))
3130breq1d 3939 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
3224, 31imbi12d 233 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3316, 32sylibd 148 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3433ralrimdva 2512 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3534ralimdva 2499 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∀𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3635reximdv 2533 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3736reximdv 2533 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
383, 37mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   class class class wbr 3929  ‘cfv 5123  (class class class)co 5774  ℂcc 7625   + caddc 7630   < clt 7807   − cmin 7940  -cneg 7941  ℝ+crp 9448  abscabs 10776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778 This theorem is referenced by:  climsub  11104  subcncntop  12731
 Copyright terms: Public domain W3C validator