ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subcn2 GIF version

Theorem subcn2 11830
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem subcn2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 negcl 8354 . . 3 (𝐶 ∈ ℂ → -𝐶 ∈ ℂ)
2 addcn2 11829 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ -𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
31, 2syl3an3 1306 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴))
4 negcl 8354 . . . . . . . . 9 (𝑣 ∈ ℂ → -𝑣 ∈ ℂ)
5 oveq1 6014 . . . . . . . . . . . . . 14 (𝑤 = -𝑣 → (𝑤 − -𝐶) = (-𝑣 − -𝐶))
65fveq2d 5633 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → (abs‘(𝑤 − -𝐶)) = (abs‘(-𝑣 − -𝐶)))
76breq1d 4093 . . . . . . . . . . . 12 (𝑤 = -𝑣 → ((abs‘(𝑤 − -𝐶)) < 𝑧 ↔ (abs‘(-𝑣 − -𝐶)) < 𝑧))
87anbi2d 464 . . . . . . . . . . 11 (𝑤 = -𝑣 → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧)))
9 oveq2 6015 . . . . . . . . . . . . . 14 (𝑤 = -𝑣 → (𝑢 + 𝑤) = (𝑢 + -𝑣))
109oveq1d 6022 . . . . . . . . . . . . 13 (𝑤 = -𝑣 → ((𝑢 + 𝑤) − (𝐵 + -𝐶)) = ((𝑢 + -𝑣) − (𝐵 + -𝐶)))
1110fveq2d 5633 . . . . . . . . . . . 12 (𝑤 = -𝑣 → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) = (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))))
1211breq1d 4093 . . . . . . . . . . 11 (𝑤 = -𝑣 → ((abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴))
138, 12imbi12d 234 . . . . . . . . . 10 (𝑤 = -𝑣 → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1413rspcv 2903 . . . . . . . . 9 (-𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
154, 14syl 14 . . . . . . . 8 (𝑣 ∈ ℂ → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
1615adantl 277 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴)))
17 simpr 110 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝑣 ∈ ℂ)
18 simpll3 1062 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐶 ∈ ℂ)
1917, 18neg2subd 8482 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (-𝑣 − -𝐶) = (𝐶𝑣))
2019fveq2d 5633 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝐶𝑣)))
2118, 17abssubd 11712 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(𝐶𝑣)) = (abs‘(𝑣𝐶)))
2220, 21eqtrd 2262 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘(-𝑣 − -𝐶)) = (abs‘(𝑣𝐶)))
2322breq1d 4093 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘(-𝑣 − -𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < 𝑧))
2423anbi2d 464 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧)))
25 negsub 8402 . . . . . . . . . . . 12 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
2625adantll 476 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝑢 + -𝑣) = (𝑢𝑣))
27 simpll2 1061 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → 𝐵 ∈ ℂ)
2827, 18negsubd 8471 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (𝐵 + -𝐶) = (𝐵𝐶))
2926, 28oveq12d 6025 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((𝑢 + -𝑣) − (𝐵 + -𝐶)) = ((𝑢𝑣) − (𝐵𝐶)))
3029fveq2d 5633 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) = (abs‘((𝑢𝑣) − (𝐵𝐶))))
3130breq1d 4093 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴 ↔ (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
3224, 31imbi12d 234 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(-𝑣 − -𝐶)) < 𝑧) → (abs‘((𝑢 + -𝑣) − (𝐵 + -𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3316, 32sylibd 149 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) ∧ 𝑣 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3433ralrimdva 2610 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑢 ∈ ℂ) → (∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3534ralimdva 2597 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∀𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3635reximdv 2631 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
3736reximdv 2631 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑤 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑤 − -𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑤) − (𝐵 + -𝐶))) < 𝐴) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴)))
383, 37mpd 13 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4083  cfv 5318  (class class class)co 6007  cc 8005   + caddc 8010   < clt 8189  cmin 8325  -cneg 8326  +crp 9857  abscabs 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518
This theorem is referenced by:  climsub  11847  subcncntop  15245
  Copyright terms: Public domain W3C validator