ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpox GIF version

Theorem ovmpox 5993
Description: The value of an operation class abstraction. Variant of ovmpoga 5994 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpox.2 (𝑥 = 𝐴𝐷 = 𝐿)
ovmpox.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpox ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem ovmpox
StepHypRef Expression
1 elex 2746 . 2 (𝑆𝐻𝑆 ∈ V)
2 ovmpox.3 . . . 4 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
32a1i 9 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
4 ovmpox.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
54adantl 277 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
6 ovmpox.2 . . . 4 (𝑥 = 𝐴𝐷 = 𝐿)
76adantl 277 . . 3 (((𝐴𝐶𝐵𝐿𝑆 ∈ V) ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿)
8 simp1 997 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐴𝐶)
9 simp2 998 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝐵𝐿)
10 simp3 999 . . 3 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → 𝑆 ∈ V)
113, 5, 7, 8, 9, 10ovmpodx 5991 . 2 ((𝐴𝐶𝐵𝐿𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆)
121, 11syl3an3 1273 1 ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  Vcvv 2735  (class class class)co 5865  cmpo 5867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870
This theorem is referenced by:  reldvg  13719
  Copyright terms: Public domain W3C validator